-
JMIR medical informatics · Aug 2019
ReviewArtificial Intelligence Versus Clinicians in Disease Diagnosis: Systematic Review.
- Jiayi Shen, Casper J P Zhang, Bangsheng Jiang, Jiebin Chen, Jian Song, Zherui Liu, Zonglin He, Sum Yi Wong, Po-Han Fang, and Wai-Kit Ming.
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.
- JMIR Med Inform. 2019 Aug 16; 7 (3): e10010.
BackgroundArtificial intelligence (AI) has been extensively used in a range of medical fields to promote therapeutic development. The development of diverse AI techniques has also contributed to early detections, disease diagnoses, and referral management. However, concerns about the value of advanced AI in disease diagnosis have been raised by health care professionals, medical service providers, and health policy decision makers.ObjectiveThis review aimed to systematically examine the literature, in particular, focusing on the performance comparison between advanced AI and human clinicians to provide an up-to-date summary regarding the extent of the application of AI to disease diagnoses. By doing so, this review discussed the relationship between the current advanced AI development and clinicians with respect to disease diagnosis and thus therapeutic development in the long run.MethodsWe systematically searched articles published between January 2000 and March 2019 following the Preferred Reporting Items for Systematic reviews and Meta-Analysis in the following databases: Scopus, PubMed, CINAHL, Web of Science, and the Cochrane Library. According to the preset inclusion and exclusion criteria, only articles comparing the medical performance between advanced AI and human experts were considered.ResultsA total of 9 articles were identified. A convolutional neural network was the commonly applied advanced AI technology. Owing to the variation in medical fields, there is a distinction between individual studies in terms of classification, labeling, training process, dataset size, and algorithm validation of AI. Performance indices reported in articles included diagnostic accuracy, weighted errors, false-positive rate, sensitivity, specificity, and the area under the receiver operating characteristic curve. The results showed that the performance of AI was at par with that of clinicians and exceeded that of clinicians with less experience.ConclusionsCurrent AI development has a diagnostic performance that is comparable with medical experts, especially in image recognition-related fields. Further studies can be extended to other types of medical imaging such as magnetic resonance imaging and other medical practices unrelated to images. With the continued development of AI-assisted technologies, the clinical implications underpinned by clinicians' experience and guided by patient-centered health care principle should be constantly considered in future AI-related and other technology-based medical research.©Jiayi Shen, Casper J P Zhang, Bangsheng Jiang, Jiebin Chen, Jian Song, Zherui Liu, Zonglin He, Sum Yi Wong, Po-Han Fang, Wai-Kit Ming. Originally published in JMIR Medical Informatics (http://medinform.jmir.org), 16.08.2019.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:

- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.