• Circulation · Dec 2004

    Thrombin stimulates human endothelial arginase enzymatic activity via RhoA/ROCK pathway: implications for atherosclerotic endothelial dysfunction.

    • Xiu-Fen Ming, Christine Barandier, Hema Viswambharan, Brenda R Kwak, François Mach, Lucia Mazzolai, Daniel Hayoz, Jean Ruffieux, Sandro Rusconi, Jean-Pierre Montani, and Zhihong Yang.
    • Vascular Biology, Department of Medicine, Division of Physiology, University of Fribourg, Fribourg, Switzerland.
    • Circulation. 2004 Dec 14; 110 (24): 3708-14.

    BackgroundArginase competes with endothelial nitric oxide synthase (eNOS) for the substrate l-arginine and decreases NO production. This study investigated regulatory mechanisms of arginase activity in endothelial cells and its role in atherosclerosis.Methods And ResultsIn human endothelial cells isolated from umbilical veins, thrombin concentration- and time-dependently stimulated arginase enzymatic activity, reaching a 1.9-fold increase (P<0.001) at 1 U/mL for 24 hours. The effect of thrombin was prevented by C3 exoenzyme or the HMG-CoA reductase inhibitor fluvastatin, which inhibit RhoA, or by the ROCK inhibitors Y-27632 and HA-1077. Adenoviral expression of constitutively active RhoA or ROCK mutants enhanced arginase activity (approximately 3-fold, P<0.001), and the effect of active RhoA mutant was inhibited by the ROCK inhibitors. Neither thrombin nor the active RhoA/ROCK mutants affected arginase II protein level, the only isozyme detectable in the cells. Moreover, a significantly higher arginase II activity (1.5-fold, not the protein level) and RhoA protein level (4-fold) were observed in atherosclerotic aortas of apoE-/- compared with wild-type mice. Interestingly, l-arginine (1 mmol/L), despite a significantly higher eNOS expression in aortas of apoE-/- mice, evoked a more pronounced contraction, which was reverted to a greater vasodilation by the arginase inhibitor l-norvaline (20 mmol/L) compared with the wild-type animals (n=5, P<0.001).ConclusionsThrombin enhances arginase activity via RhoA/ROCK in human endothelial cells. Higher arginase enzymatic activity is involved in atherosclerotic endothelial dysfunction in apoE-/- mice. Targeting vascular arginase may represent a novel therapeutic possibility for atherosclerosis.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…