• Bmc Med Genomics · Dec 2020

    Identification of biological correlates associated with respiratory failure in COVID-19.

    • Jung Hun Oh, Allen Tannenbaum, and Joseph O Deasy.
    • Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, USA. ohj@mskcc.org.
    • Bmc Med Genomics. 2020 Dec 11; 13 (1): 186.

    BackgroundCoronavirus disease 2019 (COVID-19) is a global public health concern. Recently, a genome-wide association study (GWAS) was performed with participants recruited from Italy and Spain by an international consortium group.MethodsSummary GWAS statistics for 1610 patients with COVID-19 respiratory failure and 2205 controls were downloaded. In the current study, we analyzed the summary statistics with the information of loci and p-values for 8,582,968 single-nucleotide polymorphisms (SNPs), using gene ontology analysis to determine the top biological processes implicated in respiratory failure in COVID-19 patients.ResultsWe considered the top 708 SNPs, using a p-value cutoff of 5 × 10- 5, which were mapped to the nearest genes, leading to 144 unique genes. The list of genes was input into a curated database to conduct gene ontology and protein-protein interaction (PPI) analyses. The top ranked biological processes were wound healing, epithelial structure maintenance, muscle system processes, and cardiac-relevant biological processes with a false discovery rate < 0.05. In the PPI analysis, the largest connected network consisted of 8 genes. Through a literature search, 7 out of the 8 gene products were found to be implicated in both pulmonary and cardiac diseases.ConclusionGene ontology and PPI analyses identified cardio-pulmonary processes that may partially explain the risk of respiratory failure in COVID-19 patients.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.