• Biochim. Biophys. Acta · Aug 2016

    UniCarbKB: New database features for integrating glycan structure abundance, compositional glycoproteomics data, and disease associations.

    • Matthew P Campbell and Nicolle H Packer.
    • Department of Chemistry and Biomolecular Sciences, Biomolecular Frontiers Research Centre, Macquarie University, Sydney 2109, Australia. Electronic address: matthew.campbell@mq.edu.au.
    • Biochim. Biophys. Acta. 2016 Aug 1; 1860 (8): 1669-75.

    BackgroundUniCarbKB aims to provide a resource for the representation of mammalian glycobiology knowledge by providing a curated database of structural and experimental data, supported by a web application that allows users to easily find and view richly annotated information. The database comprises two levels of annotation (i) global-specific data of oligosaccharides released and characterised from single purified glycoproteins and (ii) information pertaining to site-specific glycan heterogeneity. Additional, contextual information is provided including structural, bibliographic, and taxonomic information for each entry.MethodsSince the launch of UniCarbKB in 2012, we have continued to improve the organisation of our data model. Recently, we have extended our pipeline to collate structural and abundance changes of oligosaccharides in different human disease states and experimental models to extend our coverage of the human glycome.ResultsIn this manuscript, we demonstrate the capability of UniCarbKB to store and query relative glycan abundance data using a set of published colorectal and prostate cancer cell lines as examples. Furthermore, we outline our strategy for managing large-scale glycoproteomics data, site-specific and glycan compositional data, and how this information is adding value to UniCarbKB. Finally, we summarise our efforts to improve the efficient representation of disease terms and associated changes in glycan heterogeneity by integrating the Disease Ontology.ConclusionsUpdates and improvements to UniCarbKB have introduced unique features for storing and displaying glycosylation features of mammalian glycoproteins. The integration of site-specific glycosylation data obtained from large-scale glycoproteomics and introduction of cell line studies will improve the analysis of glycoproteins and entire glycomes.General SignificanceContinuing advancements in analytical technologies and new data types are advancing disease-related glycomics. It is increasingly necessary to ensure all the data are comprehensively annotated. UniCarbKB was established with the mission of providing a resource for human glycobiology by capturing a wide range of data with corresponding annotations. This article is part of a Special Issue entitled "Glycans in personalised medicine" Guest Editor: Professor Gordan Lauc.Copyright © 2016 Elsevier B.V. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,624,503 articles already indexed!

We guarantee your privacy. Your email address will not be shared.