• Mol. Biol. Evol. · Jul 2014

    Bayesian inference of infectious disease transmission from whole-genome sequence data.

    • Xavier Didelot, Jennifer Gardy, and Caroline Colijn.
    • Department of Infectious Disease Epidemiology, Imperial College London, London, United Kingdom xavier.didelot@gmail.com.
    • Mol. Biol. Evol. 2014 Jul 1; 31 (7): 1869-79.

    AbstractGenomics is increasingly being used to investigate disease outbreaks, but an important question remains unanswered--how well do genomic data capture known transmission events, particularly for pathogens with long carriage periods or large within-host population sizes? Here we present a novel Bayesian approach to reconstruct densely sampled outbreaks from genomic data while considering within-host diversity. We infer a time-labeled phylogeny using Bayesian evolutionary analysis by sampling trees (BEAST), and then infer a transmission network via a Monte Carlo Markov chain. We find that under a realistic model of within-host evolution, reconstructions of simulated outbreaks contain substantial uncertainty even when genomic data reflect a high substitution rate. Reconstruction of a real-world tuberculosis outbreak displayed similar uncertainty, although the correct source case and several clusters of epidemiologically linked cases were identified. We conclude that genomics cannot wholly replace traditional epidemiology but that Bayesian reconstructions derived from sequence data may form a useful starting point for a genomic epidemiology investigation.© The Author 2014. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,706,642 articles already indexed!

We guarantee your privacy. Your email address will not be shared.