• Brain Res. Dev. Brain Res. · Feb 2000

    Endogenously generated spontaneous spiking activities recorded from postnatal spiral ganglion neurons in vitro.

    • X Lin and S Chen.
    • Section on Neurobiology, Department of Cell and Molecular Biology, House Ear Institute, 2100 W. 3rd St., Los Angeles, CA 90057, USA. xlin@hei.org
    • Brain Res. Dev. Brain Res. 2000 Feb 7; 119 (2): 297-305.

    AbstractSpontaneous spiking activities in the nervous system play an important role in the neuronal development and the coding of sensory information. Such firings could be initiated by transmitter leaked from the first-order sensory receptors or as a result of the internal operation of voltage-dependent ion channels intrinsic to the neuron. We recorded endogenously-generated spontaneous action potentials (APs) from postnatal spiral ganglion (SG) neurons of mouse in vitro. SG neurons in cultures displayed statistically stable spontaneous firings with no obvious bursting, rhythmic spiking and long silent gaps for as long as the recording configuration could be maintained. Average firing rates ranged from less than 1 to over 10 spikes/s, with most cells fired around 4 spikes/s. Interpulse interval histograms were remarkably similar to those recorded in vivo from the auditory nerve, with characteristics of a Poisson-like distribution. Resting membrane potential greatly altered the AP width and the rate of spontaneous firings. Spontaneous firing rates were also found to be controlled by the availability of the Shaw-like potassium channels. In contrast, matured SG neurons did not display any spontaneous APs, probably due to a large increase in the expression of the whole-cell potassium currents in comparison to their postnatal counterparts. This study provided the first direct evidence that postnatal SG neurons were capable of generating spontaneous APs independent of inputs from hair cells. Intracellular mechanisms for generating the spontaneous random spikes and the possible roles of such spontaneous activities in the postnatal development of SG neurons are discussed.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…