• Neuropharmacology · May 2018

    Direct evidence for high affinity blockade of NaV1.6 channel subtype by huwentoxin-IV spider peptide, using multiscale functional approaches.

    • Tânia C Gonçalves, Rachid Boukaiba, Jordi Molgó, Muriel Amar, Michel Partiseti, Denis Servent, and Evelyne Benoit.
    • Sanofi R & D, Integrated Drug Discovery, In Vitro Biology & Pharmacology, F-94440, Vitry-sur-Seine, France; Service d'Ingénierie Moléculaire des Protéines (SIMOPRO), CEA, Université Paris-Saclay, F-91191, Gif sur Yvette, France.
    • Neuropharmacology. 2018 May 1; 133: 404-414.

    AbstractThe Chinese bird spider huwentoxin-IV (HwTx-IV) is well-known to be a highly potent blocker of NaV1.7 subtype of voltage-gated sodium (NaV) channels, a genetically validated analgesic target, and thus promising as a potential lead molecule for the development of novel pain therapeutics. In the present study, the interaction between HwTx-IV and NaV1.6 channel subtype was investigated using multiscale (from in vivo to individual cell) functional approaches. HwTx-IV was approximatively 2 times more efficient than tetrodotoxin (TTX) to inhibit the compound muscle action potential recorded from the mouse skeletal neuromuscular system in vivo, and 30 times more effective to inhibit nerve-evoked than directly-elicited muscle contractile force of isolated mouse hemidiaphragms. These results strongly suggest that the inhibition of nerve-evoked skeletal muscle functioning, produced by HwTx-IV, resulted from a toxin-induced preferential blockade of NaV1.6, compared to NaV1.4, channel subtype. This was confirmed by whole-cell automated patch-clamp experiments performed on human embryonic kidney (HEK)-293 cells overexpressing hNaV1.1-1.8 channel subtypes. HwTx-IV was also approximatively 850 times more efficient to inhibit TTX-sensitive than TTX-resistant sodium currents recorded from mouse dorsal root ganglia neurons. Finally, based on our data, we predict that blockade of the NaV1.6 channel subtype was involved in the in vivo toxicity of HwTx-IV, although this toxicity was more than 2 times lower than that of TTX. In conclusion, our results provide detailed information regarding the effects of HwTx-IV and allow a better understanding of the side-effect mechanisms involved in vivo and of channel subtype interactions resulting from the toxin activity.Copyright © 2018 Elsevier Ltd. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.