• Journal of biomechanics · Apr 2005

    Wave intensity in the ascending aorta: effects of arterial occlusion.

    • A W Khir and K H Parker.
    • Brunel Institute for Bioengineering, Brunel University, Uxbridge, Middlesex UB8 3PH, UK. ashraf.khir@brunel.ac.uk
    • J Biomech. 2005 Apr 1; 38 (4): 647-55.

    AbstractWe examine the effects of arterial occlusion on the pressure, velocity and the reflected waves in the ascending aorta using wave intensity analysis. In 11 anaesthetised, open-chested dogs, snares were used to produce total arterial occlusion at 4 sites: the upper descending aorta at the level of the aortic valve (thoracic); the lower thoracic aorta at the level of the diaphragm (diaphragm); the abdominal aorta between the renal arteries (abdominal) and the left iliac artery, 2 cm downstream from the aorta iliac bifurcation (iliac). Pressure and flow in the ascending aorta were measured, and data were collected before and during the occlusion. During thoracic and diaphragm occlusions a significant increase in mean aortic pressure (46% and 23%) and in wave speed (25% and 10%) was observed, while mean flow rate decreased significantly (23% and 17%). Also, the reflected compression wave arrived significantly earlier (45% and 15%) and its peak intensity was significantly greater (257% and 125%), all compared with control. Aortic occlusion distal to the renal arteries, however, caused an indiscernible change in the pressure and velocity waveforms, and in the intensities and timing of the waves in the forward and backward directions. The measured pressure and velocity waveforms are the result of the interaction between the heart and the arterial system. The separated pressure, velocity and wave intensity are required to provide information about arterial hemodynamic such as the timing and magnitude of the forward and backward waves. The net wave intensity is simpler to calculate but provides information only about the predominant direction of the waves and can be misleading when forward and backward waves of comparable magnitudes are present simultaneously.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.