• JACC Cardiovasc Imaging · Nov 2020

    Observational Study

    Prognostic Value of Right Ventricular Longitudinal Strain in Patients With COVID-19.

    • Yuman Li, He Li, Shuangshuang Zhu, Yuji Xie, Bin Wang, Lin He, Danqing Zhang, Yongxing Zhang, Hongliang Yuan, Chun Wu, Wei Sun, Yanting Zhang, Meng Li, Li Cui, Yu Cai, Jing Wang, Yali Yang, Qing Lv, Li Zhang, and Mingxing Xie.
    • Department of Ultrasound, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China.
    • JACC Cardiovasc Imaging. 2020 Nov 1; 13 (11): 2287-2299.

    ObjectivesThe aim of this study was to investigate whether right ventricular longitudinal strain (RVLS) was independently predictive of higher mortality in patients with coronavirus disease-2019 (COVID-19).BackgroundRVLS obtained from 2-dimensional speckle-tracking echocardiography has been recently demonstrated to be a more accurate and sensitive tool to estimate right ventricular (RV) function. The prognostic value of RVLS in patients with COVID-19 remains unknown.MethodsOne hundred twenty consecutive patients with COVID-19 who underwent echocardiographic examinations were enrolled in our study. Conventional RV functional parameters, including RV fractional area change, tricuspid annular plane systolic excursion, and tricuspid tissue Doppler annular velocity, were obtained. RVLS was determined using 2-dimensional speckle-tracking echocardiography. RV function was categorized in tertiles of RVLS.ResultsCompared with patients in the highest RVLS tertile, those in the lowest tertile were more likely to have higher heart rate; elevated levels of D-dimer and C-reactive protein; more high-flow oxygen and invasive mechanical ventilation therapy; higher incidence of acute heart injury, acute respiratory distress syndrome, and deep vein thrombosis; and higher mortality. After a median follow-up period of 51 days, 18 patients died. Compared with survivors, nonsurvivors displayed enlarged right heart chambers, diminished RV function, and elevated pulmonary artery systolic pressure. Male sex, acute respiratory distress syndrome, RVLS, RV fractional area change, and tricuspid annular plane systolic excursion were significant univariate predictors of higher risk for mortality (p < 0.05 for all). A Cox model using RVLS (hazard ratio: 1.33; 95% confidence interval [CI]: 1.15 to 1.53; p < 0.001; Akaike information criterion = 129; C-index = 0.89) was found to predict higher mortality more accurately than a model with RV fractional area change (Akaike information criterion = 142, C-index = 0.84) and tricuspid annular plane systolic excursion (Akaike information criterion = 144, C-index = 0.83). The best cutoff value of RVLS for prediction of outcome was -23% (AUC: 0.87; p < 0.001; sensitivity, 94.4%; specificity, 64.7%).ConclusionsRVLS is a powerful predictor of higher mortality in patients with COVID-19. These results support the application of RVLS to identify higher risk patients with COVID-19.© 2020 by the American College of Cardiology Foundation. Published by Elsevier.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,624,503 articles already indexed!

We guarantee your privacy. Your email address will not be shared.