• Pain · Nov 2021

    A thermal nociceptive patch in S2 cortex of nonhuman primates: a combined fMRI and electrophysiology study.

    • Xiang Ye, Pai-Feng Yang, Qing Liu, Barbara D Dillenburger, Robert M Friedman, and Li Min Chen.
    • Department of Radiology and Radiological Sciences, Vanderbilt University School of Medicine, Nashville, TN, United States.
    • Pain. 2021 Nov 1; 162 (11): 270527162705-2716.

    AbstractHuman functional magnetic resonance imaging (fMRI) and behavioral studies have established the roles of cortical areas along the Sylvian fissure in sensing subjective pain. Yet, little is known about how sensory aspects of painful information are represented and processed by neurons in these regions and how their electrophysiological activities are related to fMRI signals. The current study aims to partially address this critical knowledge gap by performing fMRI-guided microelectrode mapping and recording studies in the homologous region of the parietal operculum in squirrel monkeys under light anesthesia. In each animal studied (n = 8), we detected mesoscale mini-networks for heat nociception in cortical regions around the lateral sulcus. Within the network, we discovered a ∼1.5 × 1.5-mm2-sized cortical patch that solely contained heat nociceptive neurons that aligned with the heat fMRI activation locus. These neurons responded slowly to thermal (heat and cold) nociceptive stimuli exclusively, continued firing for several seconds after the succession of stimulation, and exhibited multidigit receptive fields and high spontaneous firing rates. Similar to the fMRI responses, increasing temperatures in the nociceptive range led to a nonlinear increase in firing rates. The finding of a clustering of heat nociceptive neurons provides novel insights into the unique functional organization of thermal nociception in the S2 subregion of the primate brain. With fMRI, it supports the existence of a modality-preferred heat nociceptive patch that is spatially separated and intermingled with touch patches containing neurons with comparable receptive fields and the presence of functionally distinct mini-networks in primate opercular cortex.Copyright © 2021 International Association for the Study of Pain.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,624,503 articles already indexed!

We guarantee your privacy. Your email address will not be shared.