• Stud Health Technol Inform · Jul 2019

    Clinical Decision Support Systems: From the Perspective of Small and Imbalanced Data Set.

    • Oznur Esra Par, Ebru Akcapinar Sezer, and Hayri Sever.
    • Turkish Aerospace.
    • Stud Health Technol Inform. 2019 Jul 4; 262: 344-347.

    AbstractClinical decision support systems are data analysis software that supports health professionals' decision - making the process to reach their ultimate outcome, taking into account patient information. However, the need for decision support systems cannot be denied because of most activities in the field of health care within the decision-making process. Decision support systems used for diagnosis are designed based on disease due to the complexity of diseases, symptoms, and disease-symptoms relationships. In the design and implementation of clinical decision support systems, mathematical modeling, pattern recognition and statistical analysis techniques of large databases and data mining techniques such as classification are also widely used. Classification of data is difficult in case of the small and/or imbalanced data set and this problem directly affects the classification performance. Small and/or imbalance dataset has become a major problem in data mining because classification algorithms are developed based on the assumption that the data sets are balanced and large enough. Most of the algorithms ignore or misclassify examples of the minority class, focus on the majority class. Most health data are small and imbalanced by nature. Learning from imbalanced and small data sets is an important and unsettled problem. Within the scope of the study, the publicly accessible data set, hepatitis was oversampled by distance-based data generation methods. The oversampled data sets were classified by using four different machine learning algorithms. Considering the classification scores of four different machine learning algorithms (Artificial Neural Networks, Support Vector Machines, Naive Bayes and Decision Tree), optimal synthetic data generation rate is recommended.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…