-
- A F Al-Ajlouni, M Abo-Zahhad, S M Ahmed, and R J Schilling.
- Communication Engineering Department, Hijjawi Faculty for Engineering Technology, Yarmouk University, Irbid, Jordan.
- J Med Eng Technol. 2008 Nov 1; 32 (6): 425-33.
AbstractCompression of electrocardiography (ECG) is necessary for efficient storage and transmission of the digitized ECG signals. Discrete wavelet transform (DWT) has recently emerged as a powerful technique for ECG signal compression due to its multi-resolution signal decomposition and locality properties. This paper presents an ECG compressor based on the selection of optimum threshold levels of DWT coefficients in different subbands that achieve maximum data volume reduction while preserving the significant signal morphology features upon reconstruction. First, the ECG is wavelet transformed into m subbands and the wavelet coefficients of each subband are thresholded using an optimal threshold level. Thresholding removes excessively small features and replaces them with zeroes. The threshold levels are defined for each signal so that the bit rate is minimized for a target distortion or, alternatively, the distortion is minimized for a target compression ratio. After thresholding, the resulting significant wavelet coefficients are coded using multi embedded zero tree (MEZW) coding technique. In order to assess the performance of the proposed compressor, records from the MIT-BIH Arrhythmia Database were compressed at different distortion levels, measured by the percentage rms difference (PRD), and compression ratios (CR). The method achieves good CR values with excellent reconstruction quality that compares favourably with various classical and state-of-the-art ECG compressors. Finally, it should be noted that the proposed method is flexible in controlling the quality of the reconstructed signals and the volume of the compressed signals by establishing a target PRD and a target CR a priori, respectively.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*,_underline_or**bold**. - Superscript can be denoted by
<sup>text</sup>and subscript<sub>text</sub>. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3., hyphens-or asterisks*. - Links can be included with:
[my link to pubmed](http://pubmed.com) - Images can be included with:
 - For footnotes use
[^1](This is a footnote.)inline. - Or use an inline reference
[^1]to refer to a longer footnote elseweher in the document[^1]: This is a long footnote..