• J. Am. Coll. Surg. · Nov 2014

    Airway pressure release ventilation reduces conducting airway micro-strain in lung injury.

    • Michaela Kollisch-Singule, Bryanna Emr, Bradford Smith, Cynthia Ruiz, Shreyas Roy, Qinghe Meng, Sumeet Jain, Joshua Satalin, Kathy Snyder, Auyon Ghosh, William H Marx, Penny Andrews, Nader Habashi, Gary F Nieman, and Louis A Gatto.
    • Department of General Surgery, SUNY Upstate Medical University, Syracuse, NY.
    • J. Am. Coll. Surg.. 2014 Nov 1;219(5):968-76.

    BackgroundImproper mechanical ventilation can exacerbate acute lung damage, causing a secondary ventilator-induced lung injury (VILI). We hypothesized that VILI can be reduced by modifying specific components of the ventilation waveform (mechanical breath), and we studied the impact of airway pressure release ventilation (APRV) and controlled mandatory ventilation (CMV) on the lung micro-anatomy (alveoli and conducting airways). The distribution of gas during inspiration and expiration and the strain generated during mechanical ventilation in the micro-anatomy (micro-strain) were calculated.Study DesignRats were anesthetized, surgically prepared, and randomized into 1 uninjured control group (n = 2) and 4 groups with lung injury: APRV 75% (n = 2), time at expiration (TLow) set to terminate appropriately at 75% of peak expiratory flow rate (PEFR); APRV 10% (n = 2), TLow set to terminate inappropriately at 10% of PEFR; CMV with PEEP 5 cm H2O (PEEP 5; n = 2); or PEEP 16 cm H2O (PEEP 16; n = 2). Lung injury was induced in the experimental groups by Tween lavage and ventilated with their respective settings. Lungs were fixed at peak inspiration and end expiration for standard histology. Conducting airway and alveolar air space areas were quantified and conducting airway micro-strain was calculated.ResultsAll lung injury groups redistributed inspired gas away from alveoli into the conducting airways. The APRV 75% minimized gas redistribution and micro-strain in the conducting airways and provided the alveolar air space occupancy most similar to control at both inspiration and expiration.ConclusionsIn an injured lung, APRV 75% maintained micro-anatomic gas distribution similar to that of the normal lung. The lung protection demonstrated in previous studies using APRV 75% may be due to a more homogeneous distribution of gas at the micro-anatomic level as well as a reduction in conducting airway micro-strain.Copyright © 2014 American College of Surgeons. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,624,503 articles already indexed!

We guarantee your privacy. Your email address will not be shared.