• Hearing research · Jun 2019

    Comparative Study

    Effect of neural adaptation and degeneration on pulse-train ECAPs: A model study.

    • M J van Gendt, J J Briaire, and J H M Frijns.
    • ENT-Department, Leiden University Medical Centre, PO Box 9600, 2300, RC Leiden, the Netherlands. Electronic address: m.j.van_gendt@lumc.nl.
    • Hear. Res. 2019 Jun 1; 377: 167-178.

    AbstractElectrically evoked compound action potentials (eCAPs) are measurements of the auditory nerve's response to electrical stimulation. ECAP amplitudes during pulse trains can exhibit temporal alternations. The magnitude of this alternation tends to diminish over time during the stimulus. How this pattern relates to the temporal behavior of nerve fibers is not known. We hypothesized that the stochasticity, refractoriness, adaptation of the threshold and spike-times influence pulse-train eCAP responses. Thirty thousand auditory nerve fibers were modeled in a three-dimensional cochlear model incorporating pulse-shape effects, pulse-history effects, and stochasticity in the individual neural responses. ECAPs in response to pulse trains of different rates and amplitudes were modeled for fibers with different stochastic properties (by variation of the relative spread) and different temporal properties (by variation of the refractory periods, adaptation and latency). The model predicts alternation of peak amplitudes similar to available human data. In addition, the peak alternation was affected by changing the refractoriness, adaptation, and relative spread of auditory nerve fibers. As these parameters are related to factors such as the duration of deafness and neural survival, this study suggests that the eCAP pattern in response to pulse trains could be used to assess the underlying temporal and stochastic behavior of the auditory nerve. As these properties affect the nerve's response to pulse trains, they are of uttermost importance to sound perception with cochlear implants.Copyright © 2019 Elsevier B.V. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.