• Am. J. Respir. Crit. Care Med. · Nov 1998

    Comparative Study

    Aerosolized soluble nitric oxide donor improves oxygenation and pulmonary hypertension in acute lung injury.

    • B R Jacobs, R J Brilli, E T Ballard, D J Passerini, and D J Smith.
    • Division of Critical Care Medicine and Department of Pathology, Children's Hospital Medical Center, Cincinnati, Ohio, USA. jacobs@chmcc.org
    • Am. J. Respir. Crit. Care Med. 1998 Nov 1; 158 (5 Pt 1): 1536-42.

    AbstractAcute respiratory distress syndrome (ARDS) is a major cause of morbidity and mortality in critically ill patients. The associated ventilation/perfusion mismatch and pulmonary hypertension are amenable to treatment with inhaled nitric oxide (NO) gas. Compounds formed by reacting NO with various nucleophiles (NONOates) release NO spontaneously and induce vasodilation. Intratracheally administered NONOates result in selective reduction in pulmonary hypertension. We hypothesized that a nebulized NONOate would improve oxygenation and reduce pulmonary vascular resistance in oleic acid-induced acute lung injury and pulmonary hypertension. Pigs underwent catheterization of the pulmonary artery, left atrium, and right atrium, and a flow probe was positioned around the pulmonary artery. Acute lung injury and pulmonary hypertension were induced with intravenous oleic acid. Animals were randomly assigned to receive either nebulized saline or the NONOate 2-(dimethylamino)ethylputreanine/NO (DMAEP/NO). Hemodynamic, gas exchange, pulmonary function, methemoglobin, and nitrite/nitrate measurements were obtained for 60 min. Animals in the DMAEP/NO group had improvement in PaO2 as compared with control animals (from 139 +/- 19 mm Hg to 180 +/- 19 mm Hg in the DMAEP/NO group [n = 6]; and from 144 +/- 6 mm Hg to 150 +/- 9 mm Hg in the saline group [n = 6], p < 0.05). After aerosol treatment, animals in the DMAEP/NO group had a greater reduction in pulmonary vascular resistance index (PVRI) than did control animals (from 81 +/- 17 dyne. s/cm5/kg to 34 +/- 8 dyne. s/cm5/kg; and from 104 +/- 16 dyne. s/cm5/kg to 64 +/- 11 dyne. sec/cm5/ kg in the saline group at 60 min, p < 0.05). There were no differences between the groups in systemic vascular resistance index (SVRI), cardiac index (CI), methemoglobin, nitrite/nitrate, or lung pathology scores. We conclude that DMAEP/NO improves oxygenation and has selective pulmonary vasodilating properties without causing significant systemic toxicity in this porcine model of acute lung injury.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…