• BMC geriatrics · May 2020

    Randomized Controlled Trial

    Perturbation-based gait training to improve daily life gait stability in older adults at risk of falling: protocol for the REACT randomized controlled trial.

    • Markus M Rieger, Selma Papegaaij, Frans Steenbrink, Jaap H van Dieën, and Mirjam Pijnappels.
    • Department of Human Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Van der Boechorststraat 7, 1081 BT, Amsterdam, The Netherlands.
    • BMC Geriatr. 2020 May 7; 20 (1): 167.

    BackgroundThe European population is rapidly ageing. There is an urgent need for innovative solutions to reduce fall risk in older adults. Perturbation-based gait training is a promising new method to improve reactive balance responses. Whereas positive effects on task-specific dynamic balance recovery during gait have been shown in clinical or laboratory settings, translation of these effects to daily life gait function and fall risk is limited. We aim to evaluate the effect of a 4-week perturbation-based treadmill training on daily-life dynamic gait stability, assessed with inertial sensor data. Secondary outcomes are balance recovery performance, clinical balance and gait assessment scores, the amount of physical activity in daily life and falls incidence during 6 months follow-up.MethodsThe study is a monocenter assessor-blinded randomized controlled trial. The target study sample consists of 70 older adults of 65 years and older, living in the community and with an elevated risk of falling. A block-randomization to avoid seasonal effects will be used to allocate the participants into two groups. The experimental group receives a 4-week, two times per week perturbation-based gait training programme on a treadmill, with simulated slips and trips, in combination with cognitive dual tasks. The control group receives a 4-week, two times per week treadmill training programme under cognitive dual-task conditions without perturbations. Participants will be assessed at baseline and after the 4-weeks intervention period on their daily-life gait stability by wearing an inertial sensor on the lower back for seven consecutive days. In addition, clinical balance and gait assessments as well as questionnaires on falls- and gait-efficacy will be taken. Daily life falls will be followed up over 6 months by a fall calendar.DiscussionWhereas perturbation-based training has shown positive effects in improving balance recovery strategies and in reducing laboratory falls, this study will contribute to investigate the translation of perturbation-based treadmill training effects in a clinical setting towards improving daily life gait stability and reducing fall risk and falls.Trial RegistrationNTR7703 / NL66322.028.18, Registered: January 8, 2019; Enrolment of the first participant April 8, 2019.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…