• Biochem. Biophys. Res. Commun. · Mar 2020

    Suppression of miR-193a alleviates neuroinflammation and improves neurological function recovery after traumatic brain injury (TBI) in mice.

    • Lili Si, Haifeng Wang, and Leyuan Wang.
    • Department of Neurology, Guangrao County People's Hospital, Dongying City, Shandong Province, 257300, China.
    • Biochem. Biophys. Res. Commun. 2020 Mar 5; 523 (2): 527-534.

    AbstractTraumatic brain injury (TBI) is a leading cause of morbidity and mortality in the world, and is tightly associated with microglia-regulated neuroinflammation. However, the activation profile of microglia during the pathophysiological responses is still not fully understood. Micro-RNAs (miRs), as noncoding RNAs, are involved in the progression of TBI. In this study, we attempted to explore the effects of miR-193a on TBI using the in vivo and in vitro studies. Following experimental TBI in mice, we found that miR-193a expression was significantly up-regulated in ipsilateral cortical tissues and in the microglia/macrophages isolated from the ipsilateral cortical tissues, which was accompanied with markedly enhanced expression of pro-inflammatory factors. We then found that miR-193a hairpin inhibitor (antagomir) markedly reduced lesion volume, brain water contents and neuron death in TBI mice induced by the controlled cortical impact (CCI). In addition, cognitive dysfunction in TBI mice was markedly improved after miR-193a antagomir injection. Of note, CCI-induced activation of microglia was repressed by miR-193a inhibition, along with significantly reduced expression of neuroinflammatory markers, which were associated with the blockage of nucleotide-binding oligomerization domain-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome. The anti-neuroinflammation effects of miR-193a suppression were verified in lipopolysaccharide (LPS)-incubated microglial cells transfected with miR-193a inhibitor. In contrast, LPS-induced activation of microglial cells and the expression of pro-inflammatory factors was markedly further accelerated by the transfection of miR-193a mimic. Taken together, TBI resulted in a robust neuroinflammatory response that was closely associated with the up-regulated miR-193a expression mainly in microglia/macrophages; however, miR-193a suppression significantly alleviated post-traumatic neuroinflammation and cognitive dysfunction. Therefore, miR-193a might be a promising therapeutic target for the treatment of TBI-associated neuroinflammation.Copyright © 2019. Published by Elsevier Inc.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,624,503 articles already indexed!

We guarantee your privacy. Your email address will not be shared.