• J. Thorac. Cardiovasc. Surg. · Nov 2015

    Comparative Study

    Biomechanical drawbacks of different techniques of mitral neochordal implantation: When an apparently optimal repair can fail.

    • Francesco Sturla, Emiliano Votta, Francesco Onorati, Konstantinos Pechlivanidis, Omar A Pappalardo, Leonardo Gottin, Aldo D Milano, Giovanni Puppini, Alberto Redaelli, and Giuseppe Faggian.
    • Division of Cardiovascular Surgery, Università degli Studi di Verona, Verona, Italy; Department of Electronics, Information, and Bioengineering, Politecnico di Milano, Milano, Italy. Electronic address: francesco.sturla@polimi.it.
    • J. Thorac. Cardiovasc. Surg. 2015 Nov 1;150(5):1303-12.e4.

    ObjectivesIntraoperative assessment of the proper neochordal length during mitral plasty may be complex sometimes. Patient-specific finite element models were used to elucidate the biomechanical drawbacks underlying an apparently correct mitral repair for isolated posterior prolapse.MethodsPreoperative patient-specific models were derived from cardiac magnetic resonance images; integrated with intraoperative surgical details to assess the location and extent of the prolapsing region, including the number and type of diseased chordae; and complemented by the biomechanical properties of mitral leaflets, chordae tendineae, and artificial neochordae. We investigated postoperative mitral valve biomechanics in a wide spectrum of different techniques (single neochorda, double neochordae, and preconfigured neochordal loop), all reestablishing adequate valvular competence, but differing in suboptimal millimetric expanded polytetrafluoroethylene suture lengths in a range of ±2 mm, compared with the corresponding "ideal repair."ResultsDespite the absence of residual regurgitation, alterations in chordal forces and leaflet stresses arose simulating suboptimal repairs; alterations were increasingly relevant as more complex prolapse anatomies were considered and were worst when simulating single neochorda implantation. Multiple chordae implantations were less sensitive to errors in neochordal length tuning, but associated postoperative biomechanics were hampered when asymmetric configurations were reproduced. Computational outcomes were consistent with the presence and entity of recurrent mitral regurgitation at midterm follow-up of simulated patients.ConclusionsSuboptimal suture length tuning significantly alters chordal forces and leaflet stresses, which may be key parameters in determining the long-term outcome of the repair. The comparison of the different simulated techniques suggests possible criteria for the selection and implementation of neochordae implantation techniques.Copyright © 2015 The American Association for Thoracic Surgery. Published by Elsevier Inc. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…