-
- Simon P Hoerstrup, Ian Cummings Mrcs, Mario Lachat, Frederick J Schoen, Rolf Jenni, Sebastian Leschka, Stefan Neuenschwander, Dörthe Schmidt, Anita Mol, Christina Günter, Mathias Gössi, Michele Genoni, and Gregor Zund.
- Clinic for Cardiovascular Surgery and Department of Surgical Research, University and University Hospital Zurich, Raemistrasse 100, CH 8091 Zurich, Switzerland. simon_philipp.hoerstrup@usz.ch
- Circulation. 2006 Jul 4; 114 (1 Suppl): I159-66.
BackgroundLiving autologous vascular grafts with the capacity for regeneration and growth may overcome the limitations of contemporary artificial prostheses. Particularly in congenital cardiovascular surgery, there is an unmet medical need for growing replacement materials. Here we investigate growth capacity of tissue-engineered living pulmonary arteries in a growing lamb model.Methods And ResultsVascular grafts fabricated from biodegradable scaffolds (ID 18+/-l mm) were sequentially seeded with vascular cells. The seeded constructs were grown in vitro for 21 days using biomimetic conditions. Thereafter, these tissue-engineered vascular grafts (TEVGs) were surgically implanted as main pulmonary artery replacements in 14 lambs using cardiopulmonary bypass and followed up for < or = 100 weeks. The animals more than doubled their body weight during the 2-year period. The TEVG showed good functional performance demonstrated by regular echocardiography at 20, 50, 80, and 100 weeks and computed tomography-angiography. In particular, there was no evidence of thrombus, calcification, stenosis, suture dehiscence, or aneurysm. There was a significant increase in diameter by 30% and length by 45%. Histology showed tissue formation reminiscent of native artery. Biochemical analysis revealed cellularity and proteoglycans and increased collagen contents in all of the groups, analogous to those of native vessels. The mechanical profiles of the TEVG showed stronger but less elastic tissue properties than native pulmonary arteries.ConclusionsThis study provides evidence of growth in living, functional pulmonary arteries engineered from vascular cells in a full growth animal model.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:

- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.