• J. Thorac. Cardiovasc. Surg. · Jan 2015

    A randomized assessment of an advanced tissue preservation technology in the juvenile sheep model.

    • Willem Flameng, Hadewich Hermans, Erik Verbeken, and Bart Meuris.
    • Laboratory of Experimental Cardiac Surgery, Department of Cardiovascular Diseases, Katholieke Universiteit Leuven, Leuven, Belgium.
    • J. Thorac. Cardiovasc. Surg.. 2015 Jan 1;149(1):340-5.

    BackgroundDespite improved anticalcification technology, bioprosthetic heart valves still cannot be used in younger patients because of progressive structural valve degeneration. A novel advanced tissue preservation technology was developed that uses stable functional group capping and preservation by glycerolization. Valves incorporating this novel technology can be stored in a dry condition and do not require rinsing before use. The aim of the study was to assess the effects of this new technology in terms of valve function and durability in a chronic sheep model of orthotopic implantation.MethodsForty-five juvenile sheep were randomized and either a Perimount mitral valve (6900P, control group) or the same valve design incorporating the novel tissue preservation technology (test group) was implanted in the mitral position. All valves were 25 mm. A transthoracic echocardiography was performed at 1 week and at 8 months postoperatively. The animals were then killed, an autopsy was performed, and the valves were examined radiographically (soft tissue radiograph), histologically (hematoxylin and eosin and Von Kossa staining), and chemically (calcium content). Exclusion criteria for analysis included surgical or procedural death, bacterial endocarditis or other diseases leading to premature death.ResultsThirty-one animals (14 controls and 17 test animals) remained in perfect condition during the 8-month follow-up period. Echocardiography at 1 week showed normal valve function in both groups. At 8 months, cardiac output increased significantly to the same extent in both groups (vs baseline; P < .01). The mean transvalvular pressure gradient also increased but significantly more in the control group compared with the test group (P = .03). Flow turbulence across the prosthesis was increased in the control valves compared with the test valves. The test valves had significantly less calcium content than the controls (1.9 ± 0.3 vs 6.8 ± 1.6 μg/mg; P = .002). This was confirmed by radiographic analysis and histology.ConclusionsThis study demonstrates that the novel tissue preservation technology, when applied to the Perimount mitral valve, significantly improves hemodynamic and anticalcification properties compared with the standard Perimount, a valve currently considered the standard of care.Copyright © 2015 The American Association for Thoracic Surgery. Published by Elsevier Inc. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,624,503 articles already indexed!

We guarantee your privacy. Your email address will not be shared.