-
Am. J. Respir. Cell Mol. Biol. · Mar 2009
NADPH oxidase in bone marrow-derived cells mediates pulmonary ischemia-reperfusion injury.
- Zequan Yang, Ashish K Sharma, Melissa Marshall, Irving L Kron, and Victor E Laubach.
- Department of Surgery, University of Virginia Health System, P.O. Box 801359, Charlottesville, VA 22908, USA.
- Am. J. Respir. Cell Mol. Biol. 2009 Mar 1; 40 (3): 375-81.
AbstractReactive oxygen species (ROS) play a crucial role in ischemia-reperfusion (IR) injury after lung transplantation. We hypothesized that NADPH oxidase derived from bone marrow (BM) cells contributes importantly to lung IR injury. An in vivo mouse model of lung IR injury was employed. Wild-type C57BL/6 (WT) mice, p47(phox) knockout (p47(phox)-/-) mice, or chimeras created by BM transplantation between WT and p47(phox)-/- mice were assigned to either Sham (left thoracotomy) or six study groups that underwent IR (1 h left hilar occlusion and 2 h reperfusion). After reperfusion, pulmonary function was assessed using an isolated, buffer-perfused lung system. Lung injury was assessed by measuring vascular permeability (via Evans blue dye), edema, neutrophil infiltration (via myeloperoxidase [MPO]), lipid peroxidation (via malondialdyhyde [MDA]), and expression of proinflammatory cytokines. Lung IR resulted in significantly increased MDA in WT mice, indicative of oxidative stress. WT mice treated with apocynin (an NADPH oxidase inhibitor) and p47(phox)-/- mice displayed significantly reduced pulmonary dysfunction and injury (vascular permeability, edema, MPO, and MDA). In BM chimeras, significantly reduced pulmonary dysfunction and injury occurred after IR in p47(phox)-/--->WT chimeras (donor-->recipient) but not WT-->p47(phox)-/- chimeras. Induction of TNF-alpha, IL-17, IL-6, RANTES (CCL5), KC (CXCL1), MIP-2 (CXCL2), and MCP-1 (CCL2) was significantly reduced after IR in NADPH oxidase-deficient mice and p47(phox)-/--->WT chimeras but not WT-->p47(phox)-/- chimeras. These results indicate that NADPH oxidase-generated ROS specifically from BM-derived cells contributes importantly to lung IR injury. NADPH oxidase may represent a novel therapeutic target for the treatment of IR injury after lung transplantation.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:

- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.