-
Randomized Controlled Trial Multicenter Study
Comparing real-time and intermittently scanned continuous glucose monitoring in adults with type 1 diabetes (ALERTT1): a 6-month, prospective, multicentre, randomised controlled trial.
- Margaretha M Visser, Sara Charleer, Steffen Fieuws, Christophe De Block, Robert Hilbrands, Liesbeth Van Huffel, Toon Maes, Gerd Vanhaverbeke, Eveline Dirinck, Nele Myngheer, Chris Vercammen, Frank Nobels, Bart Keymeulen, Chantal Mathieu, and Pieter Gillard.
- Department of Endocrinology, University Hospitals Leuven-KU Leuven, Leuven, Belgium.
- Lancet. 2021 Jun 12; 397 (10291): 2275-2283.
BackgroundPeople with type 1 diabetes can continuously monitor their glucose levels on demand (intermittently scanned continuous glucose monitoring [isCGM]), or in real time (real-time continuous glucose monitoring [rtCGM]). However, it is unclear whether switching from isCGM to rtCGM with alert functionality offers additional benefits. Therefore, we did a trial comparing rtCGM and isCGM in adults with type 1 diabetes (ALERTT1).MethodsWe did a prospective, double-arm, parallel-group, multicentre, randomised controlled trial in six hospitals in Belgium. Adults with type 1 diabetes who previously used isCGM were randomly assigned (1:1) to rtCGM (intervention) or isCGM (control). Randomisation was done centrally using minimisation dependent on study centre, age, gender, glycated haemoglobin (HbA1c), time in range (sensor glucose 3·9-10·0 mmol/L), insulin administration method, and hypoglycaemia awareness. Participants, investigators, and study teams were not masked to group allocation. Primary endpoint was mean between-group difference in time in range after 6 months assessed in the intention-to-treat sample. This trial is registered with ClinicalTrials.gov, NCT03772600.FindingsBetween Jan 29 and Jul 30, 2019, 269 participants were recruited, of whom 254 were randomly assigned to rtCGM (n=127) or isCGM (n=127); 124 and 122 participants completed the study, respectively. After 6 months, time in range was higher with rtCGM than with isCGM (59·6% vs 51·9%; mean difference 6·85 percentage points [95% CI 4·36-9·34]; p<0·0001). After 6 months HbA1c was lower (7·1% vs 7·4%; p<0·0001), as was time <3·0 mmol/L (0·47% vs 0·84%; p=0·0070), and Hypoglycaemia Fear Survey version II worry subscale score (15·4 vs 18·0; p=0·0071). Fewer participants on rtCGM experienced severe hypoglycaemia (n=3 vs n=13; p=0·0082). Skin reaction was more frequently observed with isCGM and bleeding after sensor insertion was more frequently reported by rtCGM users.InterpretationIn an unselected adult type 1 diabetes population, switching from isCGM to rtCGM significantly improved time in range after 6 months of treatment, implying that clinicians should consider rtCGM instead of isCGM to improve the health and quality of life of people with type 1 diabetes.FundingDexcom.Copyright © 2021 Elsevier Ltd. All rights reserved.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:

- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.