• Am. J. Respir. Cell Mol. Biol. · May 2020

    FGFR2 Is Required for AEC2 Homeostasis and Survival after Bleomycin-induced Lung Injury.

    • Samuel J Dorry, Brandon O Ansbro, David M Ornitz, Gökhan M Mutlu, and Robert D Guzy.
    • Section of Pulmonary and Critical Care Medicine, Department of Medicine, University of Chicago, Chicago, Illinois; and.
    • Am. J. Respir. Cell Mol. Biol. 2020 May 1; 62 (5): 608-621.

    AbstractAlveolar epithelial cell (AEC) injury is central to the pathogenesis of pulmonary fibrosis. Epithelial FGF (fibroblast growth factor) signaling is essential for recovery from hyperoxia- and influenza-induced lung injury, and treatment with FGFs is protective in experimental lung injury. The cell types involved in the protective effect of FGFs are not known. We hypothesized that FGF signaling in type II AECs (AEC2s) is critical in bleomycin-induced lung injury and fibrosis. To test this hypothesis, we generated mice with tamoxifen-inducible deletion of FGFR1-3 (fibroblast growth factor receptors 1, 2, and 3) in surfactant protein C-positive (SPC+) AEC2s (SPC triple conditional knockout [SPC-TCKO]). In the absence of injury, SPC-TCKO mice had fewer AEC2s, decreased Sftpc (surfactant protein C gene) expression, increased alveolar diameter, and increased collagen deposition. After intratracheal bleomycin administration, SPC-TCKO mice had increased mortality, lung edema, and BAL total protein, and flow cytometry and immunofluorescence revealed a loss of AEC2s. To reduce mortality of SPC-TCKO mice to less than 50%, a 25-fold dose reduction of bleomycin was required. Surviving bleomycin-injured SPC-TCKO mice had increased collagen deposition, fibrosis, and ACTA2 expression and decreased epithelial gene expression. Inducible inactivation of individual Fgfr2 or Fgfr3 revealed that Fgfr2, but not Fgfr3, was responsible for the increased mortality and lung injury after bleomycin administration. In conclusion, AEC2-specific FGFR2 is critical for survival in response to bleomycin-induced lung injury. These data also suggest that a population of SPC+ AEC2s require FGFR2 signaling for maintenance in the adult lung. Preventing epithelial FGFR inhibition and/or activating FGFRs in alveolar epithelium may therefore represent a novel approach to treating lung injury and reducing fibrosis.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…