• Eur J Radiol · Aug 2017

    Clinical evaluation of whole-body oncologic PET with time-of-flight and point-spread function for the hybrid PET/MR system.

    • Kun Shang, Bixiao Cui, Jie Ma, Dongmei Shuai, Zhigang Liang, Floris Jansen, Yun Zhou, Jie Lu, and Guoguang Zhao.
    • Department of Nuclear Medicine, Xuanwu Hospital of Capital Medical University, Beijing, China.
    • Eur J Radiol. 2017 Aug 1; 93: 70-75.

    PurposeHybrid positron emission tomography/magnetic resonance (PET/MR) imaging is a new multimodality imaging technology that can provide structural and functional information simultaneously. The aim of this study was to investigate the effects of the time-of-flight (TOF) and point-spread function (PSF) on small lesions observed in PET/MR images from clinical patient image sets.Materials And MethodsThis study evaluated 54 small lesions in 14 patients who had undergone 18F-fluorodeoxyglucose (FDG) PET/MR. Lesions up to 30mm in diameter were included. The PET data were reconstructed with a baseline ordered-subsets expectation-maximization (OSEM) algorithm, OSEM+PSF, OSEM+TOF and OSEM+TOF+PSF. PET image quality and small lesions were visually evaluated and scored by a 3-point scale. A quantitative analysis was then performed using the mean and maximum standardized uptake value (SUV) of the small lesions (SUVmean and SUVmax). The lesions were divided into two groups according to the long-axis diameter and the location respectively and evaluated with each reconstruction algorithm. We also evaluated the background signal by analyzing the SUVliver.ResultsOSEM+TOF+PSF provided the highest value and OSEM+TOF or PSF showed a higher value than OSEM for the visual assessment and quantitative analysis. The combination of TOF and PSF increased the SUVmean by 26.6% and the SUVmax by 30.0%. The SUVliverwas not influenced by PSF or TOF. For the OSEM+TOF+PSF model, the change in SUVmean and SUVmax for lesions <10mm in diameter was 31.9% and 35.8%, and 24.5% and 27.6% for lesions 10-30mm in diameter, respectively. The abdominal lesions obtained the higher SUV than those of chest on the images with TOF and/or PSF.ConclusionApplication of TOF and PSF significantly increased the SUV of small lesions in hybrid PET/MR images, potentially improving small lesion detectability.Copyright © 2017 Elsevier B.V. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,624,503 articles already indexed!

We guarantee your privacy. Your email address will not be shared.