• European radiology · Apr 2019

    Comparative Study

    Comparison of radiomics machine-learning classifiers and feature selection for differentiation of sacral chordoma and sacral giant cell tumour based on 3D computed tomography features.

    • Ping Yin, Ning Mao, Chao Zhao, Jiangfen Wu, Chao Sun, Lei Chen, and Nan Hong.
    • Department of Radiology, Peking University People's Hospital, 11 Xizhimen Nandajie, Xicheng District, Beijing, 100044, People's Republic of China.
    • Eur Radiol. 2019 Apr 1; 29 (4): 1841-1847.

    ObjectiveWe aimed to identify optimal machine-learning methods for preoperative differentiation of sacral chordoma (SC) and sacral giant cell tumour (SGCT) based on 3D non-enhanced computed tomography (CT) and CT-enhanced (CTE) features.MethodsA total of 95 patients were divided into a training set and a validation set. Three best feature selection methods (Relief, least absolute shrinkage and selection operator (LASSO) and Random Forest (RF)) and three classification methods, including generalised linear models (GLM), support vector machines (SVM) and RF, were compared for their performance in distinguishing SC and SGCT. The performance of the radiomics model was investigated via area under the receiver-operating characteristic curve (AUC) and accuracy (ACC) analysis.ResultsThe selection method LASSO + classifier GLM had the highest AUC of 0.984 and ACC of 0.897 in the validating set, followed by Relief + GLM (AUC = 0.909, ACC = 0.862) and LASSO + SVM (AUC = 0.900, ACC = 0.862) based on CTE features. For CT features, RF + GLM had the highest AUC of 0.889, while LASSO + GLM achieved a high ACC of 0.793 in the validating set. Regardless of the methods, CTE features significantly outperformed those from CT for the differentiation of SC and SGCT (ZAUC = -3.029, ZACC = -4.553; p < 0.05).ConclusionsOur study demonstrated CTE features performed better than CT features. The selection method LASSO + classifier GLM had the best performance in differentiation of SC and SGCT, which could enhance the application of radiomics methods in sacral tumours.Key Points• Sacral chordoma and sacral giant cell tumour are the two most common primary tumours of the sacrum with many common clinical and imaging characteristics. • A radiomics model helps clinicians to identify the histology of a sacral tumour. • CTE features should be preferred.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.