• Radiographics · Sep 2007


    Body MR imaging at 3.0 T: understanding the opportunities and challenges.

    • Mara M Barth, Martin P Smith, Ivan Pedrosa, Robert E Lenkinski, and Neil M Rofsky.
    • Department of Radiology, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA. mbarth@bidmc.harvard.edu
    • Radiographics. 2007 Sep 1; 27 (5): 1445-62; discussion 1462-4.

    AbstractThe development of high-field-strength magnetic resonance (MR) imaging systems has been driven in part by expected improvements in signal-to-noise ratio, contrast-to-noise ratio, spatial-temporal resolution trade-off, and spectral resolution. However, the transition from 1.5- to 3.0-T MR imaging is not straightforward. Compared with body imaging at lower field strength, body imaging at 3.0 T results in altered relaxation times, augmented and new artifacts, changes in chemical shift effects, and a dramatic increase in power deposition, all of which must be accounted for when developing imaging protocols. Inhomogeneities in the static magnetic field and the radiofrequency field at 3.0 T necessitate alterations in the design of coils and other hardware and new approaches to pulse sequence design. Techniques to reduce total body heating are demanded by the physics governing the specific absorption rate. Furthermore, the siting and maintenance of 3.0-T MR imaging systems are complicated by additional safety hazards unique to high-field-strength magnets. These aspects of 3.0-T body imaging represent current challenges and opportunities for radiology practice.(c) RSNA, 2007.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...


    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..