-
J Mech Behav Biomed Mater · Aug 2016
Nanofibrous biomimetic mesh can be used for pelvic reconstructive surgery: A randomized study.
- Jing Ding, Mou Deng, Xiao-Chen Song, Chun Chen, Kui-Lin Lai, Guo-Shuai Wang, Yu-Yu Yuan, Tao Xu, and Lan Zhu.
- Departments of Obstetrics and Gynecology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China.
- J Mech Behav Biomed Mater. 2016 Aug 1; 61: 26-35.
BackgroundImplantation of nonabsorbable polypropylene (PP) mesh in the vagina is the main surgical treatment for pelvic organ prolapse (POP); however, clinical outcomes remain controversial and far from satisfactory. In particular, reducing the exposure or erosion of vaginal implants to obtain improved functional reconstruction is challenging. There is an urgent need for the development of new materials and/or products for POP treatment. A nanofibrous biomimetic mesh was recently developed to address this issue.ObjectiveIn this study, the basic properties of the newly developed mesh, including structural characteristics, mechanical properties, biological response of human umbilical cord mesenchymal stem cells in vitro, and tissue regeneration and biocompatibility in vivo, were evaluated and compared with those of Gynemesh™PS.MethodsScanning electron microscopy and uniaxial tensile methods were used to evaluate microstructure and mechanical properties, respectively. Mesenchymal stem cell growth on the meshes was observed by fluorescence microscopy to visualize the expression of enhanced red fluorescent protein. Twenty-four mature female Sprague Dawley rats were randomly assigned to two groups: group 1 (nanofibrous biomimetic mesh, Medprin, Germany, n=12) and group 2 (Gynemesh(TM)PS, Ethicon, USA; n=12). The posterior vaginal wall was incised from the introitus, and the mesh was then implanted. Three implants of each type were tested for 1, 4, 8 and 12 weeks. Connective tissue organization, inflammation, vascularization, and regenerated tissue were histologically assessed.ResultsThe nanofibrous biomimetic mesh is a relatively heavy material and exhibited lower porosity than Gynemesh(TM)PS. The new mesh was stiffer than Gynemesh(TM)PS (p<0.001) but supported human umbilical cord mesenchymal stem cell attachment. Erosion of the grafts did not occur in any animal. The nanofibrous biomimetic mesh was encapsulated by a thicker layer of connective tissue and was associated with significantly greater inflammatory scores compared with Gynemesh(TM)PS. At 12 weeks, the vascularization of the new mesh was greater than that of Gynemesh(TM)PS (p<0.05). No significant difference in the thickness of the smooth muscle layer following implantation was observed between the two groups (p>0.05).ConclusionsThe nanofibrous biomimetic mesh is a candidate for reinforcing pelvic reconstruction. The mesh could be improved by decreasing its weight and stiffness and increasing its porosity. This mesh could serve as a carrier for stem cells in future regenerative medicine and tissue engineering research.Copyright © 2016 Elsevier Ltd. All rights reserved.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:

- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.