• Lab. Invest. · Feb 1999

    Hypoxia down-regulates placenta growth factor, whereas fetal growth restriction up-regulates placenta growth factor expression: molecular evidence for "placental hyperoxia" in intrauterine growth restriction.

    • A Khaliq, C Dunk, J Jiang, M Shams, X F Li, C Acevedo, H Weich, M Whittle, and A Ahmed.
    • Division of Reproductive & Child Health, University of Birmingham, Birmingham Women's Hospital, Edgbaston, United Kingdom.
    • Lab. Invest. 1999 Feb 1; 79 (2): 151-70.

    AbstractEarly placental development occurs in an environment of relative hypoxia. Hypoxia promotes angiogenesis and up-regulates vascular endothelial growth factor (VEGF) expression while it down-regulates placenta growth factor (PIGF) that possess 53% homology with VEGF. Morphological studies show poor placental vascular development and an increase in the mitotic index of cytotrophoblasts in intrauterine growth restriction (IUGR). We hypothesized that the reported relatively high oxygen level in the intervillous space in contact with IUGR placental villi will limit angiogenesis by changes in VEGF and PIGF expression and function. Western immunoblot analysis demonstrates a diametric expression of PIGF and VEGF proteins throughout pregnancy with PIGF levels increasing and VEGF levels decreasing, consistent with placental oxygenation. In IUGR placentae, the ratio of PIGF/GAPDH mRNA was increased by 2.3-fold (p < 0.03) and PIGF protein levels were also increased, (p < 0.05) as compared with gestationally-matched normal placentae. PIGF mRNA and protein were localized to the trophoblast bilayer and villous mesenchyme of the human placenta throughout gestation. In vitro studies demonstrated that increasing oxygen tension (hyperoxia) up-regulated PIGF protein in term placental villous explants, whereas hypoxic culture of a term trophoblast choriocarcinoma cell line (BeWo) down-regulated PIGF mRNA and protein and VEGFR-1 (Flt-1) autophosphorylation. The addition of PIGF-1 to a spontaneously transformed first trimester cytotrophoblast cell line stimulated DNA synthesis while PIGF-2 had little effect. VEGF and PIGF exert their biological actions by means of a common receptor VEGFR-1. In the first trimester trophoblast cells, PIGF-1 increased the association of phosphorylated extracellular signal-related kinase (ERK) with VEGFR-1 immunoprecipitates while both PIGF-1 and PIGF-2 also potentiated endogenous VEGF mediated association of phosphorylated extracellular related kinase (ERK) with VEGFR-2 (KDR). More importantly, the addition of PIGF-1 had little effect while PIGF-2 inhibited cell growth in cultured endothelial cells derived from human umbilical vein. Nitric oxide (NO) is reported to promote angiogenesis and PIGF-2 inhibited the basal release of NO from the first trimester trophoblast. The tissue expression and functional studies support the hypothesis of "placental hyperoxia" in early-onset IUGR because hypoxia down-regulates trophoblast PIGF levels, PIGF expression is increased in IUGR, and PIGF-2 inhibits endothelial cell growth. Taken together, these changes provide a cellular explanation for the observed poor angiogenesis in the pathogenesis of IUGR and show that the two PIGF isoforms may modulate trophoblast and endothelial cell function differently, possibly through potentiation of VEGF mediated activation of VEGF-2.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.