• Acta radiologica · Mar 2021

    Radiation exposure and establishment of diagnostic reference levels of whole-body low-dose CT for the assessment of multiple myeloma with second- and third-generation dual-source CT.

    • Sebastian Zensen, Denise Bos, Marcel Opitz, Johannes Haubold, Michael Forsting, Nika Guberina, and Axel Wetter.
    • Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, Essen, Germany.
    • Acta Radiol. 2021 Mar 20: 2841851211003287.

    BackgroundIn the assessment of diseases causing skeletal lesions such as multiple myeloma (MM), whole-body low-dose computed tomography (WBLDCT) is a sensitive diagnostic imaging modality, which has the potential to replace the conventional radiographic survey.PurposeTo optimize radiation protection and examine radiation exposure, and effective and organ doses of WBLDCT using different modern dual-source CT (DSCT) devices, and to establish local diagnostic reference levels (DRL).Material And MethodsIn this retrospective study, 281 WBLDCT scans of 232 patients performed between January 2017 and April 2020 either on a second- (A) or third-generation (B) DSCT device could be included. Radiation exposure indices and organ and effective doses were calculated using a commercially available automated dose-tracking software based on Monte-Carlo simulation techniques.ResultsThe radiation exposure indices and effective doses were distributed as follows (median, interquartile range): (A) second-generation DSCT: volume-weighted CT dose index (CTDIvol) 1.78 mGy (1.47-2.17 mGy); dose length product (DLP) 282.8 mGy·cm (224.6-319.4 mGy·cm), effective dose (ED) 1.87 mSv (1.61-2.17 mSv) and (B) third-generation DSCT: CTDIvol 0.56 mGy (0.47-0.67 mGy), DLP 92.0 mGy·cm (73.7-107.6 mGy·cm), ED 0.61 mSv (0.52-0.69 mSv). Radiation exposure indices and effective and organ doses were significantly lower with third-generation DSCT (P < 0.001). Local DRLs could be set for CTDIvol at 0.75 mGy and DLP at 120 mGy·cm.ConclusionThird-generation DSCT requires significantly lower radiation dose for WBLDCT than second-generation DSCT and has an effective dose below reported doses for radiographic skeletal surveys. To ensure radiation protection, DRLs regarding WBLDCT are required, where our locally determined values may help as benchmarks.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,624,503 articles already indexed!

We guarantee your privacy. Your email address will not be shared.