• J Vis Exp · May 2019

    Diffusion Tensor Magnetic Resonance Imaging in Chronic Spinal Cord Compression.

    • Weipeng Zheng, Xiuhang Ruan, Xinhua Wei, Fangtian Xu, Yuanping Huang, Ning Wang, Haoyi Chen, YingJie Liang, Wende Xiao, Xin Jiang, and Shifeng Wen.
    • Department of Orthopedics, Guangzhou First People's Hospital, Guangzhou Medical University.
    • J Vis Exp. 2019 May 7 (147).

    AbstractChronic spinal cord compression is the most common cause of spinal cord impairment in patients with nontraumatic spinal cord damage. Conventional magnetic resonance imaging (MRI) plays an important role in both confirming the diagnosis and evaluating the degree of compression. However, the anatomical detail provided by conventional MRI is not sufficient to accurately estimate neuronal damage and/or assess the possibility of neuronal recovery in chronic spinal cord compression patients. In contrast, diffusion tensor imaging (DTI) can provide quantitative results according to the detection of water molecule diffusion in tissues. In the present study, we develop a methodological framework to illustrate the application of DTI in chronic spinal cord compression disease. DTI fractional anisotropy (FA), apparent diffusion coefficients (ADCs), and eigenvector values are useful for visualizing microstructural pathological changes in the spinal cord. Decreased FA and increases in ADCs and eigenvector values were observed in chronic spinal cord compression patients compared to healthy controls. DTI could help surgeons understand spinal cord injury severity and provide important information regarding prognosis and neural functional recovery. In conclusion, this protocol provides a sensitive, detailed, and noninvasive tool to evaluate spinal cord compression.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…