• Clin Rev Allergy Immunol · Dec 2019

    Review

    The Human Microbiota and Asthma.

    • Aaron Ver Heul, Joseph Planer, and Andrew L Kau.
    • Division of Allergy and Immunology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA.
    • Clin Rev Allergy Immunol. 2019 Dec 1; 57 (3): 350-363.

    AbstractOver the last few decades, advances in our understanding of microbial ecology have allowed us to appreciate the important role of microbial communities in maintaining human health. While much of this research has focused on gut microbes, microbial communities in other body sites and from the environment are increasingly recognized in human disease. Here, we discuss recent advances in our understanding of host-microbiota interactions in the development and manifestation of asthma focusing on three distinct microbial compartments. First, environmental microbes originating from house dust, pets, and farm animals have been linked to asthma pathogenesis, which is often connected to their production of bioactive molecules such as lipopolysaccharide. Second, respiratory microbial communities, including newly appreciated populations of microbes in the lung have been associated with allergic airway inflammation. Current evidence suggests that the presence of particular microbes, especially Streptococcus, Haemophilus, and Morexella species within the airway may shape local immune responses and alter the severity and manifestations of airway inflammation. Third, the gut microbiota has been implicated in both experimental models and clinical studies in predisposing to asthma. There appears to be a "critical window" of colonization that occurs during early infancy in which gut microbial communities shape immune maturation and confer susceptibility to allergic airway inflammation. The mechanisms by which gut microbial communities influence lung immune responses and physiology, the "gut-lung axis," are still being defined but include the altered differentiation of immune cell populations important in asthma and the local production of metabolites that affect distal sites. Together, these findings suggest an intimate association of microbial communities with host immune development and the development of allergic airway inflammation. Improved understanding of these relationships raises the possibility of microbiota-directed therapies to improve or prevent asthma.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…