-
- Nina Kottler.
- Radiology Partners, El Segundo, California. Electronic address: nina.kottler@radpartners.com.
- J Am Coll Radiol. 2020 Nov 1; 17 (11): 1398-1404.
AbstractArtificial intelligence (AI) is an exciting technology that can transform the practice of radiology. However, radiology AI is still immature with limited adopters, dominated by academic institutions, and few use cases in general practice. With scale and a focus on innovation, our practice has had the opportunity to be an early adopter of AI technology. We have gained experience identifying use cases that provide value for our patients and practice; selecting AI products and vendors; piloting vendors' AI algorithms; creating our own AI algorithms; implementing, optimizing, and maintaining these algorithms; garnering radiologist acceptance of these tools; and integrating AI into our radiologists' daily workflow. With this experience, our practice has both managed challenges and identified unexpected benefits of AI. To ensure a successful and scalable AI implementation, multiple steps are required, including preparing the data, systems, and radiologists. This article reviews our experience with AI and describes why each step is important.Copyright © 2020 American College of Radiology. Published by Elsevier Inc. All rights reserved.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:

- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.