-
- Andrew B Rosenkrantz, Eric E Sigmund, Aaron Winnick, Benjamin E Niver, Bradley Spieler, Glyn R Morgan, and Cristina H Hajdu.
- Department of Radiology, NYU Langone Medical Center, New York, NY 10016, USA. Andrew.Rosenkrantz@nyumc.org
- Magn Reson Imaging. 2012 Dec 1; 30 (10): 1534-40.
ObjectivesThe objective was to perform ex vivo evaluation of non-Gaussian diffusion kurtosis imaging (DKI) for assessment of hepatocellular carcinoma (HCC), including presence of treatment-related necrosis, using fresh liver explants.MethodsTwelve liver explants underwent 1.5-T magnetic resonance imaging using a DKI sequence with maximal b-value of 2000 s/mm(2). A standard monoexponential fit was used to calculate apparent diffusion coefficient (ADC), and a non-Gaussian kurtosis fit was used to calculate K, a measure of excess kurtosis of diffusion, and D, a corrected diffusion coefficient accounting for this non-Gaussian behavior. The mean value of these parameters was measured for 16 HCCs based upon histologic findings. For each metric, HCC-to-liver contrast was calculated, and coefficient of variation (CV) was computed for voxels within the lesion as an indicator of heterogeneity. A single hepatopathologist determined HCC necrosis and cellularity.ResultsThe 16 HCCs demonstrated intermediate-to-substantial excess diffusional kurtosis, and mean corrected diffusion coefficient D was 23% greater than mean ADC (P=.002). HCC-to-liver contrast and CV of HCC were greater for K than ADC or D, although these differences were significant only for CV of HCCs (P≤.046). ADC, D and K all showed significant differences between non-, partially and completely necrotic HCCs (P≤.004). Among seven nonnecrotic HCCs, cellularity showed a strong inverse correlation with ADC (r=-0.80), a weaker inverse correlation with D (-0.24) and a direct correlation with K (r=0.48).ConclusionsWe observed non-Gaussian diffusion behavior for HCCs ex vivo; this DKI model may have added value in HCC characterization in comparison with a standard monoexponential model of diffusion-weighted imaging.Copyright © 2012 Elsevier Inc. All rights reserved.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:

- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.