• Phys Med Biol · Sep 1994

    Comparative Study Clinical Trial

    Quantitative brain FDG/PET studies using dynamic aortic imaging.

    • V Dhawan, S Takikawa, W Robeson, P Spetsieris, T Chaly, R Dahl, I Zanzi, D Bandyopadhyay, D Margouleff, and D Eidelberg.
    • Department of Neurology, North Shore University Hospital--Cornell University Medical College, Manhasset, NY, USA.
    • Phys Med Biol. 1994 Sep 1; 39 (9): 1475-87.

    AbstractPositron emission tomography (PET) measurements of cerebral glucose utilization using 18F-fluorodeoxyglucose (FDG) are a useful tool in the investigation of localized brain function in normal and disease states. A major impediment to the application of FDG/PET in clinical investigation has been the need for arterial blood sampling to quantify cerebral glucose metabolism (CMRGlc). Qualitative studies, though informative in a variety of clinical settings, are of limited value for research applications and do not utilize the inherent quantitative nature of PET. We present a novel PET technique employing a whole-body PET tomograph with abdominal aortic imaging from 0 to 30 min as an alternative to arterial blood sampling to obtain the input function for cerebral metabolic rate calculations. Two or three arterial samples taken during the 10-45 min period were used to scale and extend the blood curve and the brain was imaged from 35-55 min post-injection. We performed 12 studies in which both arterial blood sampling and aortic scans were obtained. We found the correlation of global metabolic rates (GMR) when comparing the two techniques to be extremely high (R2 = 0.99). This suggests that the use of dynamic aortic imaging is less invasive and a viable alternative to arterial blood sampling in quantitative FDG/PET imaging.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…