• Clinical radiology · Jan 2020

    Review

    Artificial intelligence and radiomics in pulmonary nodule management: current status and future applications.

    • S Ather, T Kadir, and F Gleeson.
    • Department of Radiology, Churchill Hospital, Oxford, UK.
    • Clin Radiol. 2020 Jan 1; 75 (1): 13-19.

    AbstractArtificial intelligence (AI) has been present in some guise within the field of radiology for over 50 years. The first studies investigating computer-aided diagnosis in thoracic radiology date back to the 1960s, and in the subsequent years, the main application of these techniques has been the detection and classification of pulmonary nodules. In addition, there have been other less intensely researched applications, such as the diagnosis of interstitial lung disease, chronic obstructive pulmonary disease, and the detection of pulmonary emboli. Despite extensive literature on the use of convolutional neural networks in thoracic imaging over the last few decades, we are yet to see these systems in use in clinical practice. The article reviews current state-of-the-art applications of AI and in detection, classification, and follow-up of pulmonary nodules and how deep-learning techniques might influence these going forward. Finally, we postulate the impact of these advancements on the role of radiologists and the importance of radiologists in the development and evaluation of these techniques.Copyright © 2019. Published by Elsevier Ltd.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.