• Journal of neurosurgery · Apr 2005

    Comparative Study

    Functional and phenotypic differences between glioblastoma multiforme-derived and normal human brain endothelial cells.

    • Christiana Charalambous, Florence M Hofman, and Thomas C Chen.
    • Department of Molecular Microbiology, University of Southern California Keck School of Medicine, Los Angeles, California, USA.
    • J. Neurosurg. 2005 Apr 1; 102 (4): 699-705.

    ObjectGlioblastomas multiforme (GBMs) are hypervascular tumors characterized by endothelial cell (EC) proliferation. There is increasing evidence that ECs that infiltrate systemic tumors are different from normal blood vessel cells; whether this difference is seen in the central nervous system between GBM and normal brain tissue is not known. The goal of this investigation was to characterize and compare the functional and phenotypic properties of GBM-associated ECs and normal brain ECs.MethodsHuman ECs were isolated from fresh tissue specimens, purified using flow cytometry, and characterized by immunostaining. Proliferation was measured by determining bromodeoxyuridine incorporation and Ki-67 staining, and by performing the monotetrazolium assay. The migration rate of the cells was determined using the modified Boyden chamber technique. Apoptosis was evaluated by performing the TUNEL assay, cell death enzyme-linked immunosorbent assay (ELISA), and annexin V staining. Growth factor production was analyzed using the ELISA technique. The brain tumor ECs differed from normal brain ECs morphologically and by their expression and distribution of specific markers (that is, vascular endothelial cadherin [VE-cadherin] and CD31). Functional differences between the two cell populations were also evident. The brain tumor ECs proliferated more slowly and underwent less apoptosis than normal brain ECs; however, the tumor ECs migrated faster than the normal ECs. The normal ECs were sensitive to growth factors such as vascular endothelial growth factor (VEGF) and endothelin-1 (ET-1), whereas the tumor ECs were not. In addition, the brain tumor ECs constitutively produced higher levels of ET-1 and VEGF, compared with the normal ECs.ConclusionsThe data demonstrated that ECs derived from normal brain and from GBMs have significant phenotypic and functional distinctions. Further characterization of brain tumor ECs is essential for efficient antiangiogenic treatment of gliomas.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,624,503 articles already indexed!

We guarantee your privacy. Your email address will not be shared.