• Adv Genet · Jan 2016

    Review

    Integrative Analysis of Multi-omics Data for Discovery and Functional Studies of Complex Human Diseases.

    • Yan V Sun and Yi-Juan Hu.
    • Department of Epidemiology, Rollins School of Public Health, Atlanta, GA, United States; Department of Biomedical Informatics, School of Medicine, Atlanta, GA, United States.
    • Adv Genet. 2016 Jan 1; 93: 147-90.

    AbstractComplex and dynamic networks of molecules are involved in human diseases. High-throughput technologies enable omics studies interrogating thousands to millions of makers with similar biochemical properties (eg, transcriptomics for RNA transcripts). However, a single layer of "omics" can only provide limited insights into the biological mechanisms of a disease. In the case of genome-wide association studies, although thousands of single nucleotide polymorphisms have been identified for complex diseases and traits, the functional implications and mechanisms of the associated loci are largely unknown. Additionally, the genomic variants alone are not able to explain the changing disease risk across the life span. DNA, RNA, protein, and metabolite often have complementary roles to jointly perform a certain biological function. Such complementary effects and synergistic interactions between omic layers in the life course can only be captured by integrative study of multiple molecular layers. Building upon the success in single-omics discovery research, population studies started adopting the multi-omics approach to better understanding the molecular function and disease etiology. Multi-omics approaches integrate data obtained from different omic levels to understand their interrelation and combined influence on the disease processes. Here, we summarize major omics approaches available in population research, and review integrative approaches and methodologies interrogating multiple omic layers, which enhance the gene discovery and functional analysis of human diseases. We seek to provide analytical recommendations for different types of multi-omics data and study designs to guide the emerging multi-omic research, and to suggest improvement of the existing analytical methods. Copyright © 2016 Elsevier Inc. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…