• Am. J. Physiol. Regul. Integr. Comp. Physiol. · May 2020

    Experimental oxygen concentration influences rates of mitochondrial hydrogen peroxide release from cardiac and skeletal muscle preparations.

    • Lance C Li Puma, Michael Hedges, Joseph M Heckman, Alissa B Mathias, Madison R Engstrom, Abigail B Brown, and Adam J Chicco.
    • Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado.
    • Am. J. Physiol. Regul. Integr. Comp. Physiol. 2020 May 1; 318 (5): R972-R980.

    AbstractMitochondria utilize the majority of oxygen (O2) consumed by aerobic organisms as the final electron acceptor for oxidative phosphorylation (OXPHOS) but also to generate reactive oxygen species (mtROS) that participate in cell signaling, physiological hormesis, and disease pathogenesis. Simultaneous monitoring of mtROS production and oxygen consumption (Jo2) from tissue mitochondrial preparations is an attractive investigative approach, but it introduces dynamic changes in media O2 concentration ([O2]) that can confound experimental results and interpretation. We utilized high-resolution fluorespirometry to evaluate Jo2 and hydrogen peroxide release (Jh2o2) from isolated mitochondria (Mt), permeabilized fibers (Pf), and tissue homogenates (Hm) prepared from murine heart and skeletal muscle across a range of experimental [O2]s typically encountered during respirometry protocols (400-50 µM). Results demonstrate notable variations in Jh2o2 across tissues and sample preparations during nonphosphorylating (LEAK) and OXPHOS-linked respiration states at 250 µM [O2] but a linear decline in Jh2o2 of 5-15% per 50-µM decrease in chamber [O2] in all samples. Jo2 was generally stable in Mt and Hm across [O2]s above 50 µM but tended to decline below 250 µM in Pf, leading to wide variations in assayed rates of Jh2o2/O2 across chamber [O2]s and sample preparations. Development of chemical background fluorescence from the H2O2 probe (Amplex Red) was also O2 sensitive, emphasizing relevant calibration considerations. This study highlights the importance of monitoring and reporting the chamber [O2] at which Jo2 and Jh2o2 are recorded during fluorespirometry experiments and provides a basis for selecting sample preparations for studies addressing the role of mtROS in physiology and disease.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…