• J Math Biol · Sep 2006

    Comparative Study

    Mathematical model of nitric oxide convection and diffusion in a renal medullary vas rectum.

    • Wensheng Zhang and Aurélie Edwards.
    • Department of Chemical and Biological Engineering, Tufts University, 4 Colby Street, Medford 02155, USA. wensheng.zhang@tufts.edu
    • J Math Biol. 2006 Sep 1; 53 (3): 385-420.

    AbstractIn this study, the generation, convection, diffusion, and consumption of nitric oxide (NO) in and around a single renal medullary descending or ascending vas rectum in rat were modeled using CFD. The vascular lumen (with a core RBC-rich layer and a parietal layer), the endothelium, the pericytes and the interstitium were represented as concentric cylinders. We accounted for the generation of NO by vascular endothelial cells, and that by the epithelial cells of medullary thick ascending limbs (mTALs) and inner medullary collecting ducts (IMCDs), the latter via interstitial boundary conditions. Luminal velocity profiles were obtained by modeling blood flow dynamics. Our results suggest that convection (i.e., blood flow per se) does not significantly affect NO concentrations along the cortico-medullary axis, because the latter are mostly determined by the rate of NO production and that of NO consumption by hemoglobin. However, the shear stress-mediated effects of blood flow on NO generation rates, and therefore NO concentrations, were predicted to be important. Finally, we found that unless epithelial NO generation rates (per unit tubular surface area) are at least 10 times lower than endothelium NO generation rates, NO production by mTALs and IMCDs affects vascular NO concentrations, with possible consequences for medullary blood flow distribution.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,624,503 articles already indexed!

We guarantee your privacy. Your email address will not be shared.