-
Am. J. Physiol. Renal Physiol. · Jul 2010
mPGES-1 deletion impairs aldosterone escape and enhances sodium appetite.
- Zhanjun Jia, Toshinori Aoyagi, Donald E Kohan, and Tianxin Yang.
- Department of Internal Medicine, University of Utah and Veterans Affairs Medical Center, Salt Lake City, Utah 84132, USA.
- Am. J. Physiol. Renal Physiol. 2010 Jul 1; 299 (1): F155-66.
AbstractAldosterone (Aldo) is a major sodium-retaining hormone that reduces renal sodium excretion and also stimulates sodium appetite. In the face of excess Aldo, the sodium-retaining action of this steroid is overridden by an adaptive regulatory mechanism, a phenomenon termed Aldo escape. The underlying mechanism of this phenomenon is not well defined but appeared to involve a number of natriuretic factors such prostaglandins (PGs). Here, we investigated the role of microsomal prostaglandin E synthase-1 (mPGES-1) in the response to excess Aldo. A 14-day Aldo infusion at 0.35 mg x kg(-1) x day(-1) via an osmotic minipump in conjunction with normal salt intake did not produce obvious disturbances in fluid metabolism in WT mice as suggested by normal sodium and water balance, plasma sodium concentration, hematocrit, and body weight, despite the evidence of a transient sodium accumulation on days 1 or 2. In a sharp contrast, the 14-day Aldo treatment in mPGES-1 knockoute (KO) mice led to increased sodium and water balance, persistent reduction of hematocrit, hypernatremia, and body weight gain, all evidence of fluid retention. The escaped wild-type (WT) mice displayed a remarkable increase in urinary PGE(2) excretion in parallel with coinduction of mPGES-1 in the proximal tubules, accompanied by a remarkable, widespread downregulation of renal sodium and water transporters. The increase in urinary PGE(2) excretion together with the downregulation of renal sodium and water transporters were all significantly blocked in the KO mice. Interestingly, compared with WT controls, the KO mice exhibited consistent increases in sodium and water intake during Aldo infusion. Together, these results suggest an important role of mPGES-1 in antagonizing the sodium-retaining action of Aldo at the levels of both the central nervous system and the kidney.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:

- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.