• Brain Struct Funct · Jul 2020

    Long-term potentiation of the nucleus reuniens and entorhinal cortex to CA1 distal dendritic synapses in mice.

    • Thyna Vu, Radu Gugustea, and L Stan Leung.
    • Graduate Program in Neuroscience, The University of Western Ontario, London, ON, N6A5C1, Canada.
    • Brain Struct Funct. 2020 Jul 1; 225 (6): 1817-1838.

    AbstractThe present study investigated the short-term and long-term synaptic plasticity of excitatory synapses formed by the nucleus reuniens (RE) and entorhinal cortex (EC) on the distal apical dendrites of CA1 pyramidal cells. RE-CA1 synapses are implicated in memory involving the hippocampus and medial prefrontal cortex. Current source density (CSD) analysis was used to identify excitatory and inhibitory currents following stimulation of RE or medial perforant path (MPP) in urethane-anesthetized mice in vivo. At the distal apical dendrites, RE evoked an initial excitatory sink followed by inhibitory sources at short (~ 30 ms) and long (150-200 ms) latencies, and often showing gamma (25-40 Hz) oscillations. Both RE-evoked and spontaneous gamma-frequency local field potentials displayed the same CSD depth profile. Paired-pulse facilitation (PPF) of the distal excitatory sink at 20-200 ms interpulse intervals was observed following RE stimulation, generally higher than that following MPP stimulation. Theta-frequency burst stimulation (TBS) of RE induced input-specific long-term potentiation (LTP) at the distal dendritic CA1 synapses, accompanied by reduction of PPF. After TBS of the MPP, the MPP-CA1 distal dendritic synapse could manifest LTP or long-term depression, but the non-tetanized RE-CA1 synapse was typically potentiated. Heterosynaptic potentiation of the RE to CA1 distal synapses may occur after repeated activity of EC afferents, or spread of MPP stimulus currents to coursing RE afferents. The results indicate a propensity of RE-CA1 distal excitatory synapses to show PPF, LTP and gamma oscillations, all of which may participate in memory processing by RE and EC.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,624,503 articles already indexed!

We guarantee your privacy. Your email address will not be shared.