-
- Xunan Huang, Hatim Chafi, Kenneth L Matthews, Owen Carmichael, Tanping Li, Qiguang Miao, Shuzhen Wang, and Guang Jia.
- School of Computer Science and Technology, Xidian University, Xi'an, Shaanxi, 710071, China.
- Magn Reson Imaging. 2019 Jun 1; 59: 68-76.
AbstractMagnetic resonance elastography (MRE) can be used to noninvasively resolve the displacement pattern of induced mechanical waves propagating in tissue. The goal of this study is to establish an ergonomically flexible passive-driver design for brain MRE, to evaluate the reproducibility of MRE tissue-stiffness measurements, and to investigate the relationship between tissue-stiffness measurements and driver frequencies. An ergonomically flexible passive pillow-like driver was designed to induce mechanical waves in the brain. Two-dimensional finite-element simulation was used to evaluate mechanical wave propagation patterns in brain tissues. MRE scans were performed on 10 healthy volunteers at mechanical frequencies of 60, 50, and 40 Hz. An axial mid-brain slice was acquired using an echo-planar imaging sequence to map the displacement pattern with the motion-encoding gradient along the through-plane (z) direction. All subjects were scanned and rescanned within 1 h. The Wilcoxon signed-rank test was used to test for differences between white matter and gray matter shear-stiffness values. One-way analysis of variance (ANOVA) was used to test for differences between shear-stiffness measurements made at different frequencies. Scan-rescan reproducibility was evaluated by calculating the within-subject coefficient of variation (CV) for each subject. The finite-element simulation showed that a pillow-like passive driver is capable of efficient shear-wave propagation through brain tissue. No subjects complained about discomfort during MRE acquisitions using the ergonomically designed driver. The white-matter elastic modulus (mean ± standard deviation) across all subjects was 3.85 ± 0.12 kPa, 3.78 ± 0.15 kPa, and 3.36 ± 0.11 kPa at frequencies of 60, 50, and 40 Hz, respectively. The gray-matter elastic modulus across all subjects was 3.33 ± 0.14 kPa, 2.82 ± 0.16 kPa, and 2.24 ± 0.14 kPa at frequencies of 60, 50, and 40 Hz, respectively. The Wilcoxon signed-rank test confirmed that the shear stiffness was significantly higher in white matter than gray matter at all three frequencies. The ranges of within-subject coefficients of variation for white matter, gray matter, and whole-brain shear-stiffness measurements for the three frequencies were 1.8-3.5% (60 Hz), 4.7-6.0% (50 Hz), and 3.7-4.1% (40 Hz). An ergonomic pneumatic pillow-like driver is feasible for highly reproducible in vivo evaluation of brain-tissue shear stiffness. Brain-tissue shear-stiffness values were frequency-dependent, thus emphasizing the importance of standardizing MRE acquisition protocols in multi-center studies.Copyright © 2019. Published by Elsevier Inc.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:

- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.