• Med Phys · Apr 2020

    Pseudo-CT generation from multi-parametric MRI using a novel multi-channel multi-path conditional generative adversarial network for nasopharyngeal carcinoma patients.

    • Xin Tie, Sai-Kit Lam, Yong Zhang, Kar-Ho Lee, Kwok-Hung Au, and Jing Cai.
    • The Hong Kong Polytechnic University, Hong Kong SAR, China.
    • Med Phys. 2020 Apr 1; 47 (4): 1750-1762.

    PurposeTo develop and evaluate a novel method for pseudo-CT generation from multi-parametric MR images using multi-channel multi-path generative adversarial network (MCMP-GAN).MethodsPre- and post-contrast T1-weighted (T1-w), T2-weighted (T2-w) MRI, and treatment planning CT images of 32 nasopharyngeal carcinoma (NPC) patients were employed to train a pixel-to-pixel MCMP-GAN. The network was developed based on a 5-level Residual U-Net (ResU-Net) with the channel-based independent feature extraction network to generate pseudo-CT images from multi-parametric MR images. The discriminator with five convolutional layers was added to distinguish between the real CT and pseudo-CT images, improving the nonlinearity and prediction accuracy of the model. Eightfold cross validation was implemented to validate the proposed MCMP-GAN. The pseudo-CT images were evaluated against the corresponding planning CT images based on mean absolute error (MAE), peak signal-to-noise ratio (PSNR), Dice similarity coefficient (DSC), and Structural similarity index (SSIM). Similar comparisons were also performed against the multi-channel single-path GAN (MCSP-GAN), the single-channel single-path GAN (SCSP-GAN).ResultsIt took approximately 20 h to train the MCMP-GAN model on a Quadro P6000, and less than 10 s to generate all pseudo-CT images for the subjects in the test set. The average head MAE between pseudo-CT and planning CT was 75.7 ± 14.6 Hounsfield Units (HU) for MCMP-GAN, significantly (P-values < 0.05) lower than that for MCSP-GAN (79.2 ± 13.0 HU) and SCSP-GAN (85.8 ± 14.3 HU). For bone only, the MCMP-GAN yielded a smaller mean MAE (194.6 ± 38.9 HU) than MCSP-GAN (203.7 ± 33.1 HU), SCSP-GAN (227.0 ± 36.7 HU). The average PSNR of MCMP-GAN (29.1 ± 1.6) was found to be higher than that of MCSP-GAN (28.8 ± 1.2) and SCSP-GAN (28.2 ± 1.3). In terms of metrics for image similarity, MCMP-GAN achieved the highest SSIM (0.92 ± 0.02) but did not show significantly improved bone DSC results in comparison with MCSP-GAN.ConclusionsWe developed a novel multi-channel GAN approach for generating pseudo-CT from multi-parametric MR images. Our preliminary results in NPC patients showed that the MCMP-GAN method performed apparently superior to the U-Net-GAN and SCSP-GAN, and slightly better than MCSP-GAN.© 2020 American Association of Physicists in Medicine.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?

    User can't be blank.

    Content can't be blank.

    Content is too short (minimum is 15 characters).

    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…