• J. Pharmacol. Exp. Ther. · Jul 2017

    Glutaminyl Cyclase Inhibitor PQ912 Improves Cognition in Mouse Models of Alzheimer's Disease-Studies on Relation to Effective Target Occupancy.

    • Torsten Hoffmann, Antje Meyer, Ulrich Heiser, Stephan Kurat, Livia Böhme, Martin Kleinschmidt, Karl-Ulrich Bühring, Birgit Hutter-Paier, Martina Farcher, Hans-Ulrich Demuth, Inge Lues, and Stephan Schilling.
    • Probiodrug AG, Halle, Germany (T.H., A.M., U.H., L.B., K.-U.B., I.L.); QPS Austria, Grambach, Austria (S.K., B.H.-P., M.F.); and Fraunhofer Institute for Cell Therapy and Immunology, Department for Drug Design and Target Validation, Halle, Germany (M.K., H.-U.D., S.S.).
    • J. Pharmacol. Exp. Ther. 2017 Jul 1; 362 (1): 119-130.

    AbstractNumerous studies suggest that the majority of amyloid-β (Aβ) peptides deposited in Alzheimer's disease (AD) are truncated and post-translationally modified at the N terminus. Among these modified species, pyroglutamyl-Aβ (pE-Aβ, including N3pE-Aβ40/42 and N11pE-Aβ40/42) has been identified as particularly neurotoxic. The N-terminal modification renders the peptide hydrophobic, accelerates formation of oligomers, and reduces degradation by peptidases, leading ultimately to the accumulation of the peptide and progression of AD. It has been shown that the formation of pyroglutamyl residues is catalyzed by glutaminyl cyclase (QC). Here, we present data about the pharmacological in vitro and in vivo efficacy of the QC inhibitor (S)-1-(1H-benzo[d]imidazol-5-yl)-5-(4-propoxyphenyl)imidazolidin-2-one (PQ912), the first-in-class compound that is in clinical development. PQ912 inhibits human, rat, and mouse QC activity, with Ki values ranging between 20 and 65 nM. Chronic oral treatment of hAPPSLxhQC double-transgenic mice with approximately 200 mg/kg/day via chow shows a significant reduction of pE-Aβ levels and concomitant improvement of spatial learning in a Morris water maze test paradigm. This dose results in a brain and cerebrospinal fluid concentration of PQ912 which relates to a QC target occupancy of about 60%. Thus, we conclude that >50% inhibition of QC activity in the brain leads to robust treatment effects. Secondary pharmacology experiments in mice indicate a fairly large potency difference for Aβ cyclization compared with cyclization of physiologic substrates, suggesting a robust therapeutic window in humans. This information constitutes an important translational guidance for predicting the therapeutic dose range in clinical studies with PQ912.Copyright © 2017 by The Author(s).

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,624,503 articles already indexed!

We guarantee your privacy. Your email address will not be shared.