-
J. Bone Miner. Res. · Dec 2017
Long-Term Effects of Severe Burn Injury on Bone Turnover and Microarchitecture.
- Gabriela Katharina Muschitz, Elisabeth Schwabegger, Alexandra Fochtmann, Andreas Baierl, Roland Kocijan, Judith Haschka, Wolfgang Gruther, Jakob E Schanda, Heinrich Resch, Thomas Rath, Peter Pietschmann, and Christian Muschitz.
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Medical University Vienna, Vienna, Austria.
- J. Bone Miner. Res. 2017 Dec 1; 32 (12): 2381-2393.
AbstractSevere burn injury triggers massive alterations in stress hormone levels with a dose-dependent hypermetabolic status including increased bone resorption. This study evaluated bone microarchitecture measured by noninvasive high-resolution peripheral quantitative computed tomography (HR-pQCT). Changes of serum bone turnover markers (BTM) as well as regulators of bone signaling pathways involved in skeletal health were assessed. Standardized effect sizes as a quantitative measure regarding the impact of serum changes and the prediction of these changes on bone microarchitecture were investigated. In total, 32 male patients with a severe burn injury (median total body surface area [TBSA], 40.5%; median age 40.5 years) and 28 matched male controls (median age 38.3 years) over a period of 24 months were included. In patients who had sustained a thermal injury, trabecular and cortical bone microstructure showed a continuous decline, whereas cortical porosity (Ct.Po) and pore volume increased. Initially, elevated levels of BTM and C-reactive protein (CRP) continuously decreased over time but remained elevated. In contrast, levels of soluble receptor activator of NF-κB ligand (sRANKL) increased over time. Osteocalcin, bone-specific alkaline phosphatase (BALP), intact N-terminal type 1 procollagen propeptide (P1NP), and cross-linked C-telopeptide (CTX) acutely reflected the increase of Ct.Po at the radius (R2 = 0.41), followed by the reduction of trabecular thickness at the tibia (R2 = 0.28). In adult male patients, early and sustained changes of markers of bone resorption, formation and regulators of bone signaling pathways, prolonged inflammatory cytokine activities in conjunction with muscle catabolism, and vitamin D insufficiency were observed. These alterations are directly linked to a prolonged deterioration of bone microstructure. The probably increased risk of fragility fractures should be of clinical concern and subject to future interventional studies with bone-protective agents. © 2017 American Society for Bone and Mineral Research.© 2017 American Society for Bone and Mineral Research.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:

- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.