• Magma (New York, N.Y.) · Jun 2010

    Optimized EPI for fMRI using a slice-dependent template-based gradient compensation method to recover local susceptibility-induced signal loss.

    • Jochen Rick, Oliver Speck, Simon Maier, Oliver Tüscher, Olaf Dössel, Jürgen Hennig, and Maxim Zaitsev.
    • Department of Radiology, Medical Physics, University Hospital Freiburg, Freiburg, Germany. jochen.rick@uniklinik-freiburg.de
    • MAGMA. 2010 Jun 1; 23 (3): 165-76.

    ObjectMost functional magnetic resonance imaging (fMRI) experiments use gradient-echo echo planar imaging (GE EPI) to detect the blood oxygenation level-dependent (BOLD) effect. This technique may fail in the presence of anatomy-related susceptibility-induced field gradients in the human head. In this work, we present a novel 3D compensation method in combination with a template-based correction that can be optimized over particular regions of interest to recover susceptibility-induced signal loss without acquisition time penalty.Materials And MethodsBased on an evaluation of B(0) field maps of eight subjects, slice-dependent gradient compensation moments are derived for maximal BOLD sensitivity in two compromised regions: the orbitofrontal cortex and the amygdala areas. A modified EPI sequence uses these additional gradient moments in all three imaging directions. The method is compared to non-compensated, template-based and subject-specific correction gradients and also in a breath-holding experiment.ResultsThe slice-dependent gradient compensation method significantly improves signal intensity/BOLD sensitivity by about 35/43% in the orbitofrontal cortex and by 17/30% in the amygdala areas compared to a conventional acquisition. Template-based correction and subject-specific correction perform equally well. The BOLD sensitivity in the breath hold experiment is effectively increased in compensated regions.ConclusionThe new method addresses the problem of susceptibility-induced signal loss, without compromising temporal resolution. It can be used for event-related functional experiments without requiring additional subject-specific calibration or calculation time.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?

    User can't be blank.

    Content can't be blank.

    Content is too short (minimum is 15 characters).

    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.