• J. Korean Med. Sci. · Jul 2021

    Prediction of Neurological Outcomes in Out-of-hospital Cardiac Arrest Survivors Immediately after Return of Spontaneous Circulation: Ensemble Technique with Four Machine Learning Models.

    • Ji Han Heo, Taegyun Kim, Jonghwan Shin, Gil Joon Suh, Joonghee Kim, Yoon Sun Jung, Seung Min Park, Sungwan Kim, and For SNU CARE investigators.
    • Department of Emergency Medicine, Seoul National University Hospital, Seoul, Korea.
    • J. Korean Med. Sci. 2021 Jul 19; 36 (28): e187.

    BackgroundWe performed this study to establish a prediction model for 1-year neurological outcomes in out-of-hospital cardiac arrest (OHCA) patients who achieved return of spontaneous circulation (ROSC) immediately after ROSC using machine learning methods.MethodsWe performed a retrospective analysis of an OHCA survivor registry. Patients aged ≥ 18 years were included. Study participants who had registered between March 31, 2013 and December 31, 2018 were divided into a develop dataset (80% of total) and an internal validation dataset (20% of total), and those who had registered between January 1, 2019 and December 31, 2019 were assigned to an external validation dataset. Four machine learning methods, including random forest, support vector machine, ElasticNet and extreme gradient boost, were implemented to establish prediction models with the develop dataset, and the ensemble technique was used to build the final prediction model. The prediction performance of the model in the internal validation and the external validation dataset was described with accuracy, area under the receiver-operating characteristic curve, area under the precision-recall curve, sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV). Futhermore, we established multivariable logistic regression models with the develop set and compared prediction performance with the ensemble models. The primary outcome was an unfavorable 1-year neurological outcome.ResultsA total of 1,207 patients were included in the study. Among them, 631, 139, and 153 were assigned to the develop, the internal validation and the external validation datasets, respectively. Prediction performance metrics for the ensemble prediction model in the internal validation dataset were as follows: accuracy, 0.9620 (95% confidence interval [CI], 0.9352-0.9889); area under receiver-operator characteristics curve, 0.9800 (95% CI, 0.9612-0.9988); area under precision-recall curve, 0.9950 (95% CI, 0.9860-1.0000); sensitivity, 0.9594 (95% CI, 0.9245-0.9943); specificity, 0.9714 (95% CI, 0.9162-1.0000); PPV, 0.9916 (95% CI, 0.9752-1.0000); NPV, 0.8718 (95% CI, 0.7669-0.9767). Prediction performance metrics for the model in the external validation dataset were as follows: accuracy, 0.8509 (95% CI, 0.7825-0.9192); area under receiver-operator characteristics curve, 0.9301 (95% CI, 0.8845-0.9756); area under precision-recall curve, 0.9476 (95% CI, 0.9087-0.9867); sensitivity, 0.9595 (95% CI, 0.9145-1.0000); specificity, 0.6500 (95% CI, 0.5022-0.7978); PPV, 0.8353 (95% CI, 0.7564-0.9142); NPV, 0.8966 (95% CI, 0.7857-1.0000). All the prediction metrics were higher in the ensemble models, except NPVs in both the internal and the external validation datasets.ConclusionWe established an ensemble prediction model for prediction of unfavorable 1-year neurological outcomes in OHCA survivors using four machine learning methods. The prediction performance of the ensemble model was higher than the multivariable logistic regression model, while its performance was slightly decreased in the external validation dataset.© 2021 The Korean Academy of Medical Sciences.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…