• Pain · Mar 2022

    Oral squamous cell carcinoma-released brain-derived neurotrophic factor contributes to oral cancer pain by peripheral tropomyosin receptor kinase B activation.

    • Max Grayson, Dominic Arris, Ping Wu, Jaclyn Merlo, Tarek Ibrahim, Chang Fang-Mei, Vanessa Valenzuela, Shilpa Ganatra, and Shivani Ruparel.
    • Departments of Endodontics.
    • Pain. 2022 Mar 1; 163 (3): 496507496-507.

    AbstractOral cancer pain is debilitating and understanding mechanisms for it is critical to develop novel treatment strategies treatment strategies. Brain-derived neurotrophic factor (BDNF) signaling is elevated in oral tumor biopsies and is involved with tumor progression. Whether BDNF signaling in oral tumors contributes to cancer-induced pain is not known. The current study evaluates a novel peripheral role of BDNF-tropomyosin receptor kinase B (TrkB) signaling in oral cancer pain. Using human oral squamous cell carcinoma (OSCC) cells and an orthotopic mouse tongue cancer pain model, we found that BDNF levels were upregulated in superfusates and lysates of tumor tongues and that BDNF was expressed by OSCC cells themselves. Moreover, neutralization of BDNF or inhibition of TrkB activity by ANA12, within the tumor-bearing tongue reversed tumor-induced pain-like behaviors in a sex-dependent manner. Oral squamous cell carcinoma conditioned media also produced pain-like behaviors in naïve male mice that was reversed by local injection of ANA12. On a physiological level, using single-fiber tongue-nerve electrophysiology, we found that acutely blocking TrkB receptors reversed tumor-induced mechanical sensitivity of A-slow high threshold mechanoreceptors. Furthermore, single-cell reverse transcription polymerase chain reaction data of retrogradely labeled lingual neurons demonstrated expression of full-form TrkB and truncated TrkB in distinct neuronal subtypes. Last but not the least, intra-TG siRNA for TrkB also reversed tumor-induced orofacial pain behaviors. Our data suggest that TrkB activities on lingual sensory afferents are partly controlled by local release of OSCC-derived BDNF, thereby contributing to oral cancer pain. This is a novel finding and the first demonstration of a peripheral role for BDNF signaling in oral cancer pain.Copyright © 2021 International Association for the Study of Pain.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…