• Scientific reports · Jul 2021

    A functional ultrasound brain GPS for automatic vascular-based neuronavigation.

    • M Nouhoum, J Ferrier, B-F Osmanski, N Ialy-Radio, S Pezet, M Tanter, and T Deffieux.
    • Physics for Medicine, INSERM U1273, ESPCI Paris, CNRS UMR 8063, PSL Research University, 17 rue Moreau, Paris, France.
    • Sci Rep. 2021 Jul 26; 11 (1): 15197.

    AbstractRecent advances in ultrasound imaging triggered by transmission of ultrafast plane waves have rendered functional ultrasound (fUS) imaging a valuable neuroimaging modality capable of mapping cerebral vascular networks, but also for the indirect capture of neuronal activity with high sensitivity thanks to the neurovascular coupling. However, the expansion of fUS imaging is still limited by the difficulty to identify cerebral structures during experiments based solely on the Doppler images and the shape of the vessels. In order to tackle this challenge, this study introduces the vascular brain positioning system (BPS), a GPS of the brain. The BPS is a whole-brain neuronavigation system based on the on-the-fly automatic alignment of ultrafast ultrasensitive transcranial Power Doppler volumic images to common templates such as the Allen Mouse Brain Common Coordinates Framework. This method relies on the online registration of the complex cerebral vascular fingerprint of the studied animal to a pre-aligned reference vascular atlas, thus allowing rapid matching and identification of brain structures. We quantified the accuracy of the automatic registration using super-resolution vascular images obtained at the microscopic scale using Ultrasound Localization Microscopy and found a positioning error of 44 µm and 96 µm for intra-animal and inter-animal vascular registration, respectively. The proposed BPS approach outperforms the manual vascular landmark recognition performed by expert neuroscientists (inter-annotator errors of 215 µm and 259 µm). Using the online BPS approach coupled with the Allen Atlas, we demonstrated the capability of the system to position itself automatically over chosen anatomical structures and to obtain corresponding functional activation maps even in complex oblique planes. Finally, we show that the system can be used to acquire and estimate functional connectivity matrices automatically. The proposed functional ultrasound on-the-fly neuronavigation approach allows automatic brain navigation and could become a key asset to ensure standardized experiments and protocols for non-expert and expert researchers.© 2021. The Author(s).

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,624,503 articles already indexed!

We guarantee your privacy. Your email address will not be shared.