• Radiology · Jul 2020

    Three-dimensional Ultrashort Echo Time MRI for Functional Lung Imaging in Cystic Fibrosis.

    • Julius F Heidenreich, Andreas M Weng, Corona Metz, Thomas Benkert, Josef Pfeuffer, Helge Hebestreit, Thorsten A Bley, Herbert Köstler, and Simon Veldhoen.
    • From the Department of Diagnostic and Interventional Radiology (J.F.H., A.M.W., C.M., T.A.B., H.K., S.V.) and Department of Pediatrics (H.H.), University Hospital Würzburg, Oberdürrbacher Strasse 6, 97080 Würzburg, Germany; and Department of Application Development, Siemens Healthcare GmbH, Erlangen, Germany (T.B., J.P.).
    • Radiology. 2020 Jul 1; 296 (1): 191-199.

    AbstractBackground In cystic fibrosis (CF), recurrent imaging and pulmonary function tests (PFTs) are needed for the assessment of lung function during disease management. Purpose To assess the clinical feasibility of pulmonary three-dimensional ultrashort echo time (UTE) MRI at breath holding for quantitative image analysis of ventilation inhomogeneity and hyperinflation in CF compared with PFT. Materials and Methods In this prospective study from May 2018 to June 2019, participants with CF and healthy control participants underwent PFTs and functional lung MRI by using a prototypical single breath-hold three-dimensional UTE sequence. Fractional ventilation (FV) was calculated from acquired data in normal inspiration and normal expiration. FV of each voxel was normalized to the whole lung mean (FVN), and interquartile range of normalized ventilation (IQRN; as a measure of ventilation heterogeneity) was calculated. UTE signal intensity (SI) was assessed in full expiration (SIN, normalized to aortic blood). Obtained metrics were compared between participants with CF and control participants. For participants with CF, MRI metrics were correlated with the standard lung clearance index (LCI) and PFT. Mann-Whitney U tests and Spearman correlation were used for statistical analysis. Results Twenty participants with CF (mean age, 17 years ± 9 [standard deviation]; 12 men) and 10 healthy control participants (24 years ± 8; five men) were included. IQRN was higher for participants with CF than for control participants (mean, 0.66 ± 0.16 vs 0.50 ± 0.04, respectively; P = .007). In the 20 participants with CF, IQRN correlated with obstruction markers forced expiratory volume in 1 second-to-forced vital capacity ratio (r = -0.70; 95% confidence interval [CI]: -0.92, -0.28; P < .001), mean expiratory flow 25% (r = 0.78; 95% CI: -0.95, -0.39; P < .001), and with the ventilation inhomogeneity parameter LCI (r = 0.90; 95% CI: 0.69, 0.96; P < .001). Mean SIN in full expiration was lower in participants with CF than in control participants (0.34 ± 0.08 vs 0.39 ± 0.03, respectively; P = .03). Conclusion Three-dimensional ultrashort echo time MRI in the lungs allowed for functional imaging of ventilation inhomogeneity within a few breath holds in patients with cystic fibrosis. © RSNA, 2020 Online supplemental material is available for this article. See also the editorial by Wielpütz in this issue.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…